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Abstract

I consider identification and estimation of nonparametric distributions in a linear panel data model with

multidimensional and statistically dependent unobservables. Identification requires no parametric distribu-

tional or functional assumptions on each of the unobservables, so they can be unobservable random variables

or nonparametric nonseparable functions of covariates and of unobserved heterogeneity. The methods allow

for the number of unobservables to be more than twice the number of equations, for some unobservables to

be arbitrarily dependent and for variables to be discrete or continuous. The main identifying assumptions

are the linearity and panel data structure. The identification techniques can be used to construct a broad

class of estimators that are based on empirical first-order partial derivatives of characteristic functions. I

show that the estimators are consistent and derive asymptotic convergence rates. I compare the finite sample

properties of estimators using Monte Carlo simulations.
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1 Introduction

I study identification and estimation of distributions when unobservables are multidimensional and statistically

dependent with each unobservable completely nonparametric and nonseparable.1 Some papers separately deal

with multidimensional unobservables, dependence or nonseparability while other papers deal with all of them

together but settle for identifying an average effect, imposing some structure on the model or using instrumental

variables or control functions. In this paper, linearity is the structural assumption that enables identification.

In return, identification is possible even when the number of equations is much less than the number of unob-

servables and unobservables are highly dependent, nonparametric and nonseparable.

The dimension of unobservables, separability of functions and dependence structure of the random variables

crucially influence the degree of difficulty and techniques used for identification and estimation of features in

an econometric model. The dimension of unobservables in many applied econometric models is smaller than or

equal to the number of equations. The reason is that these models usually require some monotonicity assump-

tion allowing invertibility that may not make sense when there is a relatively large number of unobservables.

Maximum likelihood and method of moments estimators, for example, are most easily implemented when func-

tions are invertible so that unobservables can be explicitly expressed in terms of distributional assumptions or

moment restrictions.

Separable models of the form Y = m(X)+ε have the major disadvantage that ∂Y
∂X fails to capture differences

in responses for observationally identical individuals. Some solutions include Heckman et al. (2010) who identify

preferences in a nonseparable hedonics model where marginal effects on utility can be heterogeneous. The

sacrifice they make for identification is a scalar unobservable heterogeneous term. Chesher (2007) observes

that in nonseparable nonparametric models with more unobservables than equations, one must either reduce

the dimension of the unobservables, add observable equations or be content to identify average quantities.

Chernozhukov et al. (2010) choose to identify average quantities in nonseparable panel data models. The

problem is that identifying average quantities may not have useful structural interpretations.

Independence of variables is helpful to identify structural functions. Matzkin (2003) identifies a nonpara-

metric function by observing that the distribution of outcome variables conditional on covariates is the same as

the distribution of the unobservable as long as the unobservable and covariates are independent. Independence

is helpful but usually considered a strong assumption because choices of covariates and unobservables are often

related. When covariates and unobservables are dependent the most common solutions use control functions or

instrumental variables. When unobservables are dependent with each other the most common solutions involve

1Dependence in this paper is always statistical or linear dependence. It never refers to the dependent variable, which I call the
outcome variable.
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explicit modeling of the dependence. Altonji and Matzkin (2005) identify average marginal effects by assuming

independence of covariates and unobservables conditional on control variables. Torgovitsky (2011) identifies a

nonparametric function using instruments and assuming that their effect on the copula is restricted. Cunha et

al. (2010) identify a nonparametric production function by explicitly expressing an unobservable in terms of

other unobservables and an independent error.

I consider the linear multidimensional panel data model Y = AU where Y = (Y1, . . . , YP )
′ is a vector of P

measurements, U = (U1, . . . , UM )′ is a vector of M unobservables and A is a P×M matrix of known parameters.

This paper is concerned with identification and estimation of the distribution of U . Linearity and panel data

are strong assumptions but in return for this structure, identification will be possible even when P << M ,

the unobservables are highly dependent and completely nonseparable. I will present several applications where

linearity is a natural or widely accepted assumption.

When Rank(A) ≥ M (which indicates that the number of unobservables is smaller than or equal to the

number of information-giving equations) and the unobservables are mutually independent then the distribution

of U is identified from the distribution of Y and any pseudoinverse, A+, by Pr(U < u) = Pr(A+Y < u).

The linearity and panel data structure in this paper, however, will enable identification even when the number

of unobservables is far larger than the number of equations and unobservables are highly dependent. In the

examples considered later the number of unobservables will be about twice as large as the number of equations

and in one of the examples every unobservable will be arbitrarily dependent with at least one other unobservable.

Notice that the unobservables do not necessarily have to be variables but can be arbitrary nonparametric

functions of interest. Once the distribution of the function is identified then the function can be identified

by referring to the nonparametric identification literature (see Matzkin (2007) as a reference for many of the

standard techniques). Hence, the unobservables U can be unobservable variables as in the deconvolution problem

X = X∗ + ε where the true variable X∗ is the object of interest or unobservable and nonseparable functions

Um = gm(x, α) of covariates x and heterogeneity α as in Evdokimov (2011) Yit = m(Xit, αi) + εit where the

nonparametric function m is identified.

My identification procedure and estimator are closely related the work of Kotlarski (1967), who proved

identification in the simplest linear model where unobservables are completely nonparametric and identification

is not trivial. The implications of his lemma are ubiquitous in the measurement error literature (see Carroll et

al. (2006) and Chen et al. (2011) for detailed reviews on identification and estimation in measurement error

models). Ingenious applications of Kotlarski’s lemma have also been used by Li et al. (2000) for identification

in a common value auction setting and Evdokimov (2011) in a panel data model with nonadditive unobserved

heterogeneity and an idiosyncratic shock.
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Székely and Rao (2000) generalize Kotlarski’s identification lemma to identification in a multi-factor model

with independent nonparametric unobservables. They use the P (P +1)/2 second-order partial derivatives of the

characteristic function to set up a system of equations and prove that a rank condition on a Hessian matrix is

necessary and sufficient for nonparametric identification. They can identify up toM = P (P+1)/2 unobservables.

Bonhomme and Robin (2010) base their estimator on Székely and Rao (2002) system of second-order partial

derivatives of characteristic functions and apply their estimator in several economic settings.2

Of all these papers, Bonhomme and Robin (2010) is the only one that considers the same general system of

equations Y = AU and constructively identifies U . I thus point out some of the important differences between

Bonhomme and Robin (2010) and this paper. First, their identification relies crucially on the assumption of

mutually independent unobservables.3 Second, their identification procedure either identifies the entire vector of

unobservables or none of them, so there is no possibility for partial identification. Third, their estimator requires

stronger moment conditions and nonvanishing characteristic functions. Fourth, their expression of the estimator

is substantially different from the one in this paper: they use second-order partial derivatives of characteristic

functions while I use first-order partial derivatives of characteristic functions similar to the types of estimators in

Kotlarski (1967) and most of the papers on measurement error with repeated measurements. Of the numerous

estimators (as a result of overidentification), there are no papers that investigate the issue of a “best” estimator,

so the Bonhomme and Robin (2010) estimator may be better for some distributions and worse for others. The

theoretical uniform convergence rates suggest that the Bonhomme and Robin (2010) estimator converges slowly

when the characteristic function has fat tails. In finite sample simulations their estimator converges fastest in

many commonly used distributions (like Standard Normal and Gamma) but is the least robust and does not

converge when distributions are multimodal (e.g. Bimodal) or discontinuous (e.g. Uniform). Their estimator

takes more CPU time and requires significantly more computer memory due to the need to solve a larger system

of equations and hence a larger matrix inversion.

The dimension of unobservables, nonseparability and dependence structure of unobservables have made the

analysis of production functions an interesting area of research. Olley and Pakes (1996) and Levinsohn and

Petrin (2003) assume the Cobb-Douglas functional form Yit = βKKit + βLLit + ωit + εit where Yit is the log of

output, Kit is the log of capital input and Lit is the log of labor input. ωit represents shocks that are observable

or predictable by firms such as managerial ability or defect rates of the manufacturing process while εit are

idiosyncratic shocks. Each equation has two unobservables and is completely separable. εit is independent of all

other variables and ωit and the covariates may be dependent. Because ωit is a scalar, some source of heterogeneity

2A replication of their identification procedure is in the appendix.
3Bonhomme and Robin (2010) state that it is not straightforward to extend their method to account for dependent unobservables

and that it is an interesting problem to research.
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(labor-specific effects or capital-specific effects) is ignored. The covariates and ωit are additively separable, so any

change in output due to a change in labor or capital fails to capture differences in responses for observationally

identical individuals. The dependence between ωit and covariates is solved by modeling the evolution of ωit

and the relationship of ωit and covariates. I extend the model to Yijt = a1tg(Lijt, αi) + a2th(Kijt, βj) + εijt

where a1t and a2t are unobserved parameters, h and g are unobserved nonparametric functions, αi and βj are

arbitrarily dependent sources of time-invariant heterogeneity and εijt is an idiosyncratic shock.

In addition to the production function application, I will also solve a model of individual earnings dynamics

with dependence between unobservables and a measurement error model with repeated measurements focusing

on comparing different estimators.

In addition to being concerned with identification, several papers also propose ways to relax the required regu-

larity conditions. The early measurement error literature (and literature on deconvolutions) followed Kotlarski’s

assumption of nonvanishing characteristic functions. Fan (1991) and Li and Vuong (1998) assumed nonvanishing

characteristic functions on finite support while Schennach (2004) assumed nonvanishing characteristic functions

on infinite support. Bondesson (1974) was the first to prove identification when the characteristic functions

satisfy a “short gap” condition, which meant that the characteristic functions have no intervals of length L for

all L > 0. More recently, Delaigle et al. (2008), Carrasco and Florens (2010) and Evdokimov and White (2011)

impose a similar condition by restricting the characteristic function to have a countable number of isolated

zeros. In this paper I impose an absolute continuity condition, which is a weaker condition that includes all the

above restrictions as a subset.

The identification strategy consists of three conceptual steps. First, linear combinations of equations are

used to simplify the problem in the original space of unobservables RM . Second, a system of equations is

created that is identical to Y = AU except with random variables Y and U replaced by partial derivatives of

characteristic functions of random variables. This reduces the problem by creating P systems of equations, each

of which lies in the smaller space RP . Third, a rank condition on a modification of the matrix A ensures that

an unobservable partial derivative of a characteristic function can be expressed as a functional of observable

partial derivatives of characteristic functions. The characteristic function and density of the unobservable are

then recovered by using the fundamental theorem of calculus and a Fourier transform inversion.

The identification results in this paper are constructive, so the estimator replaces population quantities

with sample analogs. Unobservables are identified sequentially, so identification and estimation of nuisance

random variables can sometimes be avoided. The estimator is easy to implement and requires no numerical

optimization. I provide results on the uniform convergence rate of the estimator. The support of distributions

can be unbounded and can vanish on sets of Lebesgue measure zero. The convergence rates are relatively slow
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and depend on the smoothness of observable and unobservable distributions.

The identification strategy produces a broad class of estimators that use partial derivatives of characteristic

functions. The choice of estimator in most of the referenced papers is arbitrary. The Monte Carlo Simulations

section investigates the finite sample properties of five different estimators in the measurement error model with

two measurements. The estimators perform very well in all simulations irrespective of underlying distributions.

The paper is organized as follows. Section 2 presents the model and its assumptions and sets up the

empirical illustrations that will later be identified. Section 3 proves identification and provides an algorithm

that can be used for identification and construction of estimators. Section 4 constructs the estimator of the

characteristic functions and densities. Section 5 proves consistency of the estimator. Section 6 displays Monte

Carlo simulations. Section 7 concludes. The Appendix contains some proofs and technical arguments.

2 Model and Assumptions

This section presents and explains the assumptions of the model and three empirical illustrations. The focus of

this research is identification and estimation of the distributions of the unobservables as in the following basic

setup of a panel data model

Assumption 1. {Yn, Un}Nn=1 is a random independent sample from the random vector (Y,U), where Yn =

(Yn1, . . . YnP ) is observed and Un = (Un1, . . . UnM ) is unobserved. Let apm, p = 1, . . . , P , m = 1, . . . ,M be real

valued scalars that are known to the researcher.4 Assume




Y1

...

YP




=




a11U1 + . . .+ a1MUM

...
. . .

...

aP1U1 + . . .+ aPMUM




=




a11 . . . . . . a1M
...

. . .
. . .

...

a11 . . . . . . aPM







U1

...

UM




(1)

This is compactly written as Y = AU .

As is conventional in economic models, Y denotes the outcome variables and U the unobservable variables but

unlike most economic models there seem to be no covariates, X. This is justified in a few ways. First, covariates

can enter the model in a known way and included as part of Y . Second, in some applications identification of

the distribution of an unobservable is a first step within a larger problem. For example, Cunha, et al. (2010)

consider a multistage model where they identify the distribution of latent variables like parental investment

in the first stage and then use the identified distributions along with other covariates to identify a production

function in the second stage. Third, in some applications, conditional on covariates, the model becomes a

4In applications where p represents time, p = 1, . . . , P is usually denoted by t = 1, . . . , T .
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system of equations where the unobservables are nonparametric and nonseparable functions of covariates and

an unobservable random scalar. For example, Evdokimov (2011) considers the model Yit = m(Xit, α) + εit.

Conditional on Xit = x, let U1 = m(x, α) and U2 = εit then the model is written as Y = U1 + U2.

Identification relies crucially on linearity and a known or consistent estimator of the matrix A.56 These are

strong, but in some applications, natural or widely used assumptions. For example, in the earnings dynamics

model considered later, observed total income is equal to the sum of observable and unobservable income

components. Thus, linearity and the known matrix A (consisting of 1s and 0s) follow by definition. In the

measurement error literature the most common assumption used is that the observed mismeasured variable

equals the sum of the unobserved true variable and an unobserved measurement error. The idea originates from

the signal processing literature where an observed signal (the mismeasured variable) is an unknown signal (true

variable) corrupted by additive noise. Recently, Hu and Schennach (2007) weaken the linearity assumption in

a measurement error context. In the empirical illustrations below, the form of A is natural, widely used or

identified as a preliminary step.

The dependence structure of the unobservable U is as follows:

Assumption 2. Assume U = (U1, . . . , UM ) =
(
Z1, . . . , ZMind

,W1, . . . ,WMdep

)
, M = Mind + Mdep where

Um, m = 1, . . . ,M , are scalar real-valued nondegenerate random variables, Z = (Z1, . . . , ZMind
) is a vector of

mutually independent random variables, W =
(
W1, . . . ,WMdep

)
is a vector of dependent random variables and

Z is independent of W .

The model can be generalized to (U1, . . . , UM ) =

(
Z1, . . . , ZMind

,W 1
1 , . . . ,W

1
M1

, . . . ,W
M̃dep

1 , . . . ,W
M̃dep

M
M̃dep

)
,

M = Mind +
∑M̃dep

j=1 Mj where Z = (Z1, . . . , ZMind
) is a vector of mutually independent random variables and

W j =
(
W j

1 , . . . ,W
j
M

j

)
is a vector of dependent random variables. Z,W 1, . . . ,W M̃dep are mutually independent.

All the results continue to hold in this more general setting but to avoid unnecessarily complicating notation,

identification is proved under Assumption 2. The empirical illustration described later in this section on earnings

dynamics considers U = (W 1,W 2).

Definition 1. Denote QU,p∗,m∗

m = {{ap∗m 6=0} ∪ {Um and Um∗ are dependent }}. For any matrix A = (A1 . . . AM )

with columns Am and entries apm, p = 1, . . . , P , m = 1, . . . ,M define

AU,p∗,m∗

=
(
A1I

(
QU,p∗,m∗

1

)
. . . AMI

(
QU,p∗,m∗

M

))′
=




a11I
(
QU,p∗,m∗

1

)
. . . aP1I

(
QU,p∗,m∗

1

)

...
. . .

...

a1MI
(
QU,p∗,m∗

M

)
. . . aPMI

(
QU,p∗,m∗

M

)




5In future work I hope to generalize the model to Y = g(U) where g is a known multivariate function.
6The problem looks like one from regression analysis except the objective is to identify the distribution of U instead of the

parameters A.
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where IE is the indicator function.7

An unobservable Um (a column in A and a row in AU,p∗,m∗

) is included in AU,p∗,m∗

if its coefficient in row

p∗ is nonzero (in the Identification section, identification will come from “moving” equation p∗ so I will refer to

equation p∗ as the source from where identification is coming) or Um and Um∗ are dependent. Hence, AU,p∗,m∗

is

the transpose of the matrix A and only includes unobservables that are in some way related to the identification

of Um∗ . When Um ∈ Z then Um and Um∗ are independent so QU,p∗,m∗

m = {ap∗m 6=0} which means that Um can

only affect identification through equation p∗. When Um ∈ W then Um and Um∗ are dependent if and only

if Um∗ ∈ W so QU,p∗,m∗

m = {{ap∗m 6=0} ∪ {Um∗ ∈W}} which means that Um can affect identification through

equation p∗ or through its dependence with Um∗ . Hence, the superscript U is the vector of random variables

for the dependence structure, the superscript p∗ indicates that equation p∗ will be the source of identification

and the superscript m∗ indicates that the distribution of Um∗ will be identified. Construction of AU,p∗,m∗

will

be illustrated later in this section.

To identify the distribution of Um∗ , the assumptions on the matrix A and the assumptions on the moments

of U are as follows:

Assumption 3. There exists a matrix B and p∗ ∈ {1, . . . , P} such that

i. Ỹ = ÃU where Ỹ = BY and Ã = BA.

ii. em
∗

=
(
em

∗

1 , . . . , em
∗

P

)′
solves ÃU,p∗,m∗

em
∗

= em∗ .8

iii. Denote W−p∗−m = {Wm′ | m′ 6= m, ãp∗m 6= 0 and ãp∗m′ = 0}. Assume E[Wm|W−p∗−m] = E[Wm], E[Wm|Um∗ ] =

E[Wm] and E[Zm] are known. Assume E[|Um|] is finite.

iv. Let φY ′em∗ (s) be the characteristic function of Y ′em
∗

=
∑P

p=1 e
m∗

p Yp evaluated at s and φm∗(s) be the char-

acteristic function of Um∗ evaluated at s.9 Define the measures µ =
∫
|φY ′em∗ (s)|ds and ν =

∫
|φm∗(s)|ds.

Assume that for every set X with nonzero Lebesgue measure µ(X) = 0 implies ν(X) = 0. 10 For all

intervals (a, b) ⊂ (−∞,∞) that do not contain any such X assume
∫ b

a
1

|φY (uem∗ )|du <∞.

A is not invertible, but left multiplication by B as in Assumption 3i. gets as close as possible to an inversion

by transforming A to reduced row echelon form with Um∗ as a free variable. This results in Um∗ in as many

equations as possible and a sparse matrix.

7The indicator function, I(E), is defined as

I(E) =

{

1 If E is true
0 Otherwise

8em∗ = (0, . . . , 0, 1, 0, . . . , 0)′ where 1 is in the m∗th coordinate.
9The characteristic function of a random vector V is φV (t) = E[exp(iV ′t)].

10ν is absolutely continuous with respect to µ, which is written as ν << µ.
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The span of A is smaller than the dimension of unobservables (RP ⊂ RM ), so after left multiplication by B

in Assumption 3i., I will reduce the problem from RM to RP (by a Fourier transformation and differentiation).

In the smaller space RP , ÃU,p∗,m∗

as in Assumption 3ii. will be the object used to take linear combinations of

the P observables, Y1, . . . YP and span RP . The rank condition ensures that Um∗ lies in this space.

Both left multiplication of A by B and right multiplication of AU,p∗,m∗

by em
∗

take linear combinations

of rows of A. I emphasize again the important difference: A includes all unobservables while Ap∗m∗

, whose

coefficients are multiplied by an indicator variable, only includes unobservables that have a connection to the

source of identification (which is equation p∗) through ãp∗m 6= 0 or the object to be identified (which is Um∗)

through Um ∩ Um∗ ∈W .

Assumption 3iii. is a location normalization and assumes that some first moments are finite. Many economic

models assume an error term with mean (or conditional mean) equal to zero, which is enough for Assumption

3iii. to be satisfied.

To understand Assumption 3iv., I need to explain the connection between characteristic functions and

densities and between the unobservable characteristic function and observable characteristic function. The

density of a random variable Um∗ at u is uniquely expressed as

fm∗(u) =
1

2π

∫
e−isuφm∗(s)ds

where
{
e−isu, s ∈ R

}
is an infinite collection of basis functions in L2(R) and the characteristic functions,

φm∗(s), are weights at each of the basis functions. The unsigned measure, ν =
∫
|φm∗(s)|ds, assigns lengths to

sets. If ν(X) equals zero then no weight is given to basis functions in X (i.e.
∫
X
e−isuφm∗(s)ds = 0). Similarly,

the density of a random variable Y ′em
∗

is uniquely expressed in terms of basis functions
{
e−isu, s ∈ R

}
and

weights φY ′em∗ (s) and a measure is defined as µ =
∫
|φY ′em∗ (s)|ds.

In the Identification section, φm∗(s) will be expressed as a functional of φY ′em∗ that will be undefined when

φY ′em∗ equals zero on sets of nonzero Lebesgue measure. A natural solution is to require φm∗ = 0 on these sets;

this is exactly the condition µ(X) = 0 implies ν(X) = 0. Intuitively, the density we need to know the value of

φm∗ on R, but on sets where φY = 0 we do not know φm∗ , so we assume that φm∗ = 0 on these sets.

Assumption 3iv., includes as special cases characteristic functions that do not vanish on their support

(bounded or unbounded), characteristic functions with isolated zeros and characteristic functions that have

gaps.

To facilitate exposition, the panel data models of three empirical illustrations are presented. The purpose of

these examples is to demonstrate different types of problems, dependence assumptions and identifying techniques

through various choices of B, p∗ and em
∗

. I will show that each example conforms to the setup in Assumption
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1, introduce the dependence structure of the unobservables (Assumption 2,) and show that Assumption 3 is

satisfied. The emphasis will be on constructing ÃU,p∗,m∗

and showing that Assumption 3ii. holds. In the

Identification section, I return to the empirical illustrations and prove identification.

Example 1: Measurement Error With Two Measurements

Consider the measurement error model with repeated measurements as in Li and Vuong (1998)

X1 = X∗ + ε1

X2 = X∗ + ε2

where X1 and X2 are observed measurements, X∗ is an unobserved true variable and ε1 and ε2 are measurement

errors. Let Y = (X1, X2)
′ and U = (X∗, ε1, ε2)′ then

Y =




1 1 0

1 0 1


U

Assume E[X∗|·] = E[ε1|·] = E[ε2|·] = 0 where “|·” denotes “conditional on all other random variables” (this

notation is also used in the following examples) and X∗, ε1 and ε2 are mutually independent.11

Only the distribution of X∗ is interesting. I verify Assumptions 3i.-iii. for three different choices of B, p∗

and m∗ that are used in three different estimators. Assumption iii. always holds because E[X∗|·] = E[ε1|·] =

E[ε2|·] = 0.

Estimator A. Let B = I2 so Ã = A.12 U1 = X∗ is identified from the first equation . Hence, the source

of identification is equation 1 (p∗ = 1) and the unobservable to be identified is U1 (m∗ = 1). I now construct

ÃU,1,1. U1 = X∗ and U2 = ε1 play a part in the identification process because they have nonzero coefficients in

equation p∗ = 1 so they are included in ÃU,1,1. ε2 on the other hand is not in equation p∗ = 1 nor are X∗ and

ε2 dependent so ε2 (the last column of A) is not included in ÃU,1,1. To the right of ÃU,1,1 I label the variable

and include the reason the reason why it is included in ÃU,1,1. When (p∗,m∗) = (1, 1) then

ÃU,1,1 =




1 1

1 0

0 0




← X∗ is the random variable to be identified

← ε1 is in equation p∗ = 1

← ε2 plays no part in the identification process

11These conditions are stronger than what is needed for identification. In fact, U is identified under the weaker assumptions
E[ε1|X∗] = 0, E[ε2] = 0 and (X∗, ε1) independent of ε2. The goal of this example, however, is not to find the weakest set
of conditions for identification but rather to compare different estimators (only one estimator is consistent with the dependence
assumption). One of the simulations in the Monte Carlo Simulations section assumes the weaker dependence assumption.

12IK is the identity matrix of size K.
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Finally, when e1 = (0, 1)′ then ÃU,1,1e1 = e1 so Assumption 3ii. is satisfied. Hence, Assumptions 3i.-iii. are

satisfied for identification of U1 = X∗.

Estimator B. The distribution of ε1 is identified as a preliminary step to identifying the distribution of

X∗. Let B = I2 so Ã = A. U2 = ε1 (m∗ = 2) will be identified from the first equation (p∗ = 1). When

(p∗,m∗) = (1, 2) and e2 = (1,−1) then

ÃU,1,2 =




1 1

1 0

0 0




← X∗ is in equation p∗ = 1

← ε1 is the random variable to be identified

← ε2 plays no part in the identification process

ÃU,1,2e2 = e2

Assumptions 3i.-iii. are satisfied for identification of U2 = ε1. X∗ will be identified by the deconvolution of

Y1 = X∗ + ε1 which is possible because ε1 is independent of X∗, the distribution of Y1 is observed and the

distribution of ε1 is identified.

Estimator C. As in Estimator B, the distribution of ε1 is identified as a preliminary step to identifying the

distribution of X∗. Let

B =




1 0

1 −1


 Ã = BA =




1 0

1 −1







1 1 0

1 0 1


 =




1 1 0

0 1 −1




ε1 = U2 (m∗ = 2) is identified from the second equation (p∗ = 2). When (p∗,m∗) = (2, 2) and e2 = (1, 0) then

ÃU,2,2 =




0 0

1 1

0 −1




← X∗ plays no part in the identification process

← ε1 is the random variable to be identified

← ε2 is in equation p∗ = 2

ÃU,2,2e2 = e2

Assumptions 3i.-iii. are satisfied for identification of U2 = ε1. As in Estimator B, identification of X∗ follows

by deconvolution.

Example 2: Earnings Dynamics

Consider the earnings dynamics model as in Bonhomme and Robin (2010) with weaker dependence assumptions

wnt = fn + yPnt + yTnt, n = 1, . . . , N, t = 1, . . . , T

yPnt = yPnt−1 + εnt t ≥ 2

yTnt = ηnt
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ηn1 = ηnT = 0

where wnt is the residual of a regression of individual log earnings, fn is a fixed effect, yTnt is transitory earnings,

yPnt is persistent earnings, εnt is a persistent earnings shock and and ηnt is a transitory earnings shock. Set T = 4

and difference out the individual fixed effects fn by wnt − wnt−1. Let Y = (wn2 − wn1, wn3 − wn2, wn4 − wn3)
′

and U = (ηn2, ηn3, εn2, εn3, εn4)
′ then

Y =




1 0 1 0 0

−1 1 0 1 0

0 −1 0 0 1




U

Assume E[ηn2|·] = E[ηn3] = E[εn2|·] = E[εn3|·] = E[εn4|·] = 0 and (ηn2, ηn3) and (εn2, εn3, εn4) are indepen-

dent.13 I verify Assumptions 3i.-iii. Assumption iii. always holds because E[ηn2|·] = E[ηn3] = E[εn2|·] =

E[εn3|·] = E[εn4|·] = 0.

Let B = I5 so Ã = A. U1 = ηn2 (m∗ = 1) is identified from the second equation (p∗ = 2). When

(p∗,m∗) = (2, 1) and e1 = (1, 0, 0) then

ÃU,2,1 =




1 −1 0

0 1 −1

0 0 0

0 1 0

0 0 0




← ηn2 is the random variable to be identified

← ηn3 is in equation p∗ = 2

← εn2 plays no part in the identification process

← εn3 is in equation p∗ = 2

← εn4 plays no part in the identification process

ÃU,2,1e1 = e1

Hence, Assumption 3ii. is satisfied for identification of ηn2. U2 = ηn3 (m∗ = 2) and U4 = εn3 (m∗ = 4) are also

identified from equation p∗ = 2 so ÃU,2,2 = ÃU,2,4 = ÃU,2,1. When e2 = (0, 0,−1) then ÃU,2,2e2 = e2 and when

e4 = (1, 1, 1) then ÃU,2,4e4 = e4 so Assumption 3ii. is also satisfied for ηn3 and εn3. Hence, Assumptions 3i.-iii.

are satisfied for identification of U1 = ηn2, U2 = ηn3 and U4 = εn3.

Now let

B =




1 0 0

0 0 1

1 1 1




Ã = BA =




1 0 0

0 0 1

1 1 1







1 0 1 0 0

−1 1 0 1 0

0 −1 0 0 1




=




1 0 1 0 0

0 −1 0 0 1

0 0 1 1 1




13The unobservables are identified under other dependency assumptions.
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U3 = εn2 (m∗ = 3) is identified from the third equation (p∗ = 3). When (p∗,m∗) = (3, 3), e3 = (1, 0, 0) then

ÃU,3,3 =




0 0 0

0 0 0

1 0 1

0 0 1

0 1 1




← ηn2 plays no part in the identification process

← ηn3 plays no part in the identification process

← εn2 is in equation p∗ = 2

← εn3 is the random variable to be identified

← εn4 is in equation p∗ = 2

ÃU,3,3e3 = e3

Hence, Assumption 3ii. is satisfied for identification of εn2. U5 = εn4 (m∗ = 5) is also identified from equation

p∗ = 3 so ÃU,3,5 = ÃU,3,3. When e5 = (0, 1, 0) then ÃU,3,5e5 = e5 so Assumption 3ii. is also satisfied for εn4.

Hence, Assumptions 3i.-iii. are satisfied for identification of U3 = εn2 and U5 = εn4.

Example 3: Production Function

Consider a Cobb-Douglas-type production function

Yijt = atg(Lijt, αi) + bth(Kijt, βj) + εijt

where Yijt is the log of output, Lijt is the log of labor, Kijt is the log of capital, αi is unobserved labor

heterogeneity and βj is unobserved capital heterogeneity. Assume a and b are known and a 6= b.14 Suppose the

number of labor-capital, (i, j), observations is large and T = 2. Let Lij1 = Lij′2 = l and observe that for the

same labor-individual g(Lij1, αi) = g(Lij′2, αi) = g (l, αi). Similarly let Li′j′1 = Li′j2 = l̄ then g(Li′j′1, αi′) =

g(Li′j2, αi′) = g
(
l̄, αi′

)
. Let Kij1 = Ki′j2 = k and observe that for the same capital-individual h(Kij1, βj) =

h(Ki′j2, βj) = h (k, βj). Similarly let Ki′j′1 = Kij′2 = k̄ then h(Ki′j′1, βj′) = h(Kij′2, βj′) = h
(
k̄, βj′

)
.15

Yij1 = g (l, αi) + h (k, βj) + εij1

Yij′2 = ag (l, αi) + bh
(
k̄, βj′

)
+ εij′2

Yi′j′1 = g
(
l̄, αi′

)
+ h

(
k̄, βj′

)
+ εi′j′1

Yi′j2 = ag
(
l̄, αi′

)
+ bh (k, βj) + εi′j2

14They are identified in the Identification section.
15This happens when there are two labor-individuals and two capital-individuals. At T = 1 they are randomly grouped together

and at T = 2 the groupings are switched.
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Let Y = (Yij1, Yij′22, Yi′j′1, Yi′j2)
′ and U = (g (l, αi) , g

(
l̄, αi′

)
, h (k, βj) , h

(
k̄, βj′

)
, εij1, εij′2, εi′j′1, εi′j2)

′ then

Y =




1 0 1 0 1 0 0 0

a 0 0 b 0 1 0 0

0 1 0 1 0 0 1 0

0 a b 0 0 0 0 1




U

Assume E[g (l, αi) |·] = E[g
(
l̄, αi′

)
|·] = E[h (k, βj) |·] = E[h

(
k̄, βj′

)
|·] = E[εij1|·] = E[εij′2|·] = E[εi′j′1|·] =

E[εi′j2|·] = 0 and εij1, εij′2, εi′j′1, εi′j2 and (g (l, αi) , g
(
l̄, αi′

)
, h (k, βj) , h

(
k̄, βj′

)
) are mutually independent.16

I verify Assumptions 3i.-iii. Assumption iii. always holds because E[g (l, αi) |·] = E[g
(
l̄, αi′

)
|·] = E[h (k, βj) |·] =

E[h
(
k̄, βj′

)
|·] = E[εij1|·] = E[εij′2|·] = E[εi′j′1|·] = E[εi′j2|·] = 0.

Let

B =




1 0 0 0

0 1 0 0

0 0 1 0

−b b
a − b2

a 1




Ã = BA =




1 0 1 0 1 0 0 0

a 0 0 b 0 1 0 0

0 1 0 1 0 0 1 0

0 a− b2

a 0 0 −b b
a − b2

a 1




U5 = εij1 (m∗ = 5) is identified from the fourth equation (p∗ = 4). When (p∗,m∗) = (4, 5) and e5 = (1, 0, 0, 0)

then

ÃU,4,5 =




0 0 0 0

0 0 1 a2−b2

a

0 0 0 0

0 0 0 0

1 0 0 −b

0 1 0 b
a

0 0 1 − b2

a

0 0 0 1




← g (l, αi) plays no part in the identification process

← g
(
l̄, αi′

)
is in equation p∗ = 4

← h (k, βj) plays no part in the identification process

← h
(
k̄, βj′

)
plays no part in the identification process

← εij1 is the random variable to be identified

← εij′2 is in equation p∗ = 4

← εi′j′1 is in equation p∗ = 4

← εi′j2 is in equation p∗ = 4

ÃU,4,5e5 = e5

Assumptions 3i.-iii. are satisfied for identification of U5 = εij1. U6 = εij′2 (m∗ = 6) is also identified from

equation p∗ = 4 so ÃU,4,5 = ÃU,4,6. When e6 = (0, 1, 0, 0) then ÃU,4,6e6 = e6 so Assumption 3ii. is also satisfied

for εij′2. Hence, Assumptions 3i.-iii. are satisfied for identification of U5 = εij1 and U6 = εij′2.

16The unobservables are identified under other dependency assumptions.
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Let

B =




1 − a
b2

a
b − 1

b

0 1 0 0

0 0 1 0

0 0 0 1




Ã = BA =




1− a2

b2 0 0 0 1 − a
b2

a
b − 1

b

a 0 0 b 0 1 0 0

0 1 0 1 0 0 1 0

0 a b 0 0 0 0 1




U7 = εi′j′2 (m∗ = 7) is identified from the first equation (p∗ = 1). When (p∗,m∗) = (1, 7) and e7 = (0, 0, 1, 0)

then

ÃU,1,7 =




1− a2

b2 a 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

− a
b2 1 0 0

a
b 0 1 0

− 1
b 0 0 1




← g (l, αi) is in equation p∗ = 1

← g
(
l̄, αi′

)
plays no part in the identification process

← h (k, βj) plays no part in the identification process

← h
(
k̄, βj′

)
plays no part in the identification process

← εij1 is in equation p∗ = 1

← εij′2 is in equation p∗ = 1

← εi′j′1 is the random variable to be identified

← εi′j2 is in equation p∗ = 1

ÃU,1,7e7 = e7

Assumptions 3i.-iii. are satisfied for identification of U7 = εi′j′1. U8 = εi′j2 (m∗ = 8) is also identified from

equation p∗ = 1 so ÃU,1,8 = ÃU,1,7. When e8 = (0, 0, 0, 1) then ÃU,1,8e8 = e8 so Assumption 3ii. is also satisfied

for εi′j2. Hence, Assumptions 3i.-iii. are satisfied for identification of U7 = εi′j′1 and U8 = εi′j2

Because εij1, εij′2, εi′j′2 and εi′j2 are identified and independent of (g (l, αi) , g
(
l̄, αi′

)
, h (k, β) , h

(
k̄, βj′

)
),

a new system of equations is setup and Assumption 3i-ii. are checked,




Y1 − U5

Y2 − U6

Y4 − U7

Y4 − U8




=




1 0 1 0

a 0 0 b

0 1 0 1

0 a b 0







U1

U2

U3

U4
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Let

B =
1

a2 − b2




−b2 a −ab b

−ab b −b2 a

a2 −a ab −b

ab −b a2 −a




Ã = BA =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




U1 = g (l, α) (m∗ = 1) is identified from the first (p∗ = 1) equation. When (p∗,m∗) = (1, 1) and e1 = (1, 0, 0, 0)

ÃU,1,1 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




← g (l, αi) is the random variable to be identified

← g
(
l̄, αi′

)
is dependent with g (l, αi)

← h (k, βj) is dependent with g (l, αi)

← h
(
k̄, βj′

)
is dependent with g (l, αi)

ÃU,1,1e1 = e1

Assumptions 3i.-iii. are satisfied for identification of U1 = g (l, αi). Similarly, U2 = g
(
l̄, αi′

)
, U3 = h (k, βj)

and U4 = h
(
k̄, βj′

)
are identified from equations p∗ = 2, p∗ = 3 and p∗ = 4 respectively so ÃU,2,2 = ÃU,2,4 =

ÃU,2,1 = ÃU,1,1. When e2 = (0, 1, 0, 0) then ÃU,2,2e2 = e2, when e3 = (0, 0, 1, 0) then ÃU,3,3e3 = e3 and when

e4 = (0, 0, 0, 1) then ÃU,4,4e4 = e4 so Assumption 3ii. is also satisfied for g
(
l̄, αi′

)
, h (k, βj) and h

(
k̄, βj′

)
.

Hence, Assumptions 3i.-iii. are satisfied for identification of U1 = g (l, αi), U2 = g
(
l̄, αi′

)
, U3 = h (k, βj) and

U4 = h
(
k̄, βj′

)
.

Unobservables are identified separately but, as in some of the examples above, ÃU,p∗,m∗
1 = ÃU,p∗,m∗

2 so that

the same matrix is used to identify the distributions of Um∗
1
and Um∗

2
. The sequential identification technique

implies that sometimes U is partially identified and sometimes nuisance unobservables are not identified at all

(like in Example 1 where identification of ε2 was avoided).

Additionally, some unobservables are identified using Assumption 3 but others fail Assumption 3 (like in

Example 1 Estimator B, Example 1 Estimator C and Example 3); then a smaller system of equations is created

and identification may be possible from this new system. A recursive (and terminating) technique can be used

to identify unobservables but possibly not all of them.

I briefly mention a few other applications of the model as set up Assumption 1. The measurement error

model with repeated measurements can be generalized to

Xp =

M∑

m=1

X∗
mI(Spm) + εp p =1, . . . , P

where Xp, p = 1, . . . , P are P observed measurements, X∗
m, m = 1, . . . ,M are M unobserved true variables,
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I(Spm) is an indicator that X∗
m is included in equation p and εp, p = 1, . . . , P are measurement errors. Different

bureaus collect information on different segments of population income, census counts etc. The information can

be combined using the techniques in this paper.

Li et al. (2000) use the results from the measurement error literature and a solution mechanism for a first

price auction to identify distributions when each bidder has valuation U0 + Aj , j = 1, . . . , L where U0 is the

“common” value, Aj is an idiosyncratic shock and L is the number of bidders. This can be extended in a similar

way to the generalized measurement error model above. Consider,

Yp =

M∑

m=1

X∗
mI(Spm) + εp p =1, . . . , P

Yp are observed bids of bidder 1, . . . , P , X∗
m, m = 1, . . . ,M are unobserved “common” values, I(Spm) is an

indicator that bidder p’s valuation includes the common value X∗
m and εp, p = 1, . . . , P are unobserved private

values.

Gautier and Kitamura (2009) apply results from deconvolution to nonparametrically estimate the density in

a random coefficients binary choice model. This paper may offer an opportunity to extend their results.

3 Identification

The following theorem is the main result of this paper. It provides sufficient conditions for identification of

Um∗ when some of the unobservables are linearly and statistically dependent. The proof is constructive so that

sample analogs can be used for estimation. The unobservables and observables can be discrete or continuous.

Theorem 1. If Assumptions 1,2 and 3 are satisfied then the distribution of Um∗ is identified.

Start with the system of equations in Assumption 1 and left multiply Y = AU by B from Assumption 3i.

to get a new system of equations. The objective of left multiplying by B is to take linear combinations of

Y1, . . . , YP so that Um∗ is in as many equations as possible and the other unobservables are in as few equations

as possible. Each equation with Um∗ provides an opportunity to identify its distribution. The sparsity makes it

easier to distinguish the effects of Um∗ from other unobservables. BA should be a reduced row echelon matrix

with Um∗ as a free variable (in many economic models A is already in reduced row echelon form).

For the purposes of proving identification assume that B is the identity matrix (B = IP ) so that Ã = A

otherwise left multiply Y = AU by B, relabel the variables and work with the new system of equations.

I now show that the linear relationship Y = AU will be retained after a transformation to log characteristic
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functions. The characteristic function of Y is

φY1,...,YP
(t1, . . . , tP ) = E

[
exp

(
i(a11t1 + . . .+ aP1tP )Z1 + . . .+ i(a1M t1 + . . .+ aPM tP )WMdep

)]

=

Mind∏

m=1

φZm

(
P∑

p=1

apmtp

)
E

[
exp

(
iW1

P∑

p=1

apMind+1tp + . . .+ iWMdep

P∑

p=1

apM tp

)]

where the first equality follows from the definition of the characteristic function and the second equality follows

from the dependence structure in Assumption 2. Take the natural logarithm of both sides and let ϕY (t) =

lnφY (t), ϕm(t) = lnφZm
(t), m = 1, . . . ,Mind and

ϕW (ω) = ϕW1,...,WMdep

(
ω1, . . . , ωMdep

)
= lnE

[
exp

(
iW1ω1 + . . .+ iWMdep

ωMdep

)]

where Y = (Y1, . . . , YP ), W = (W1, . . . ,WMdep
) and t = (t1, . . . , tp) then

ϕY (t) =

Mind∑

m=1

ϕm

(
P∑

p=1

apmtp

)
+ ϕW

(
P∑

p=1

apMind+1tp, . . . ,
P∑

p=1

apM tp

)

Take the derivative with respect to t1, . . . tP




∂ϕY (t)
∂t1
...

∂ϕY (t)
∂tP




=




a11 . . . a1M
...

. . .
...

aP1 . . . aPM







ϕ′
1

(∑P
p=1 ap1tp

)

...

ϕ′
Mind

(∑P
p=1 apMind

tp

)

∂ϕW (
∑P

p=1 apMind+1tp,...,
∑P

p=1 apM tp)
∂ω1

...

∂ϕW (
∑P

p=1 apMind+1tp,...,
∑P

p=1 apM tp)
∂ωMdep




Observe that the new system of equations is identical to (1) except random variables are replaced by first-

order partial derivatives of characteristic functions. Dependent unobservables cannot be separated so remain

together as part of nonseparable multidimensional functions.

By Assumption 3 equation p∗ will be used to identify Um∗

∂ϕY (t)

∂tp∗

=

Mind∑

m=1

ap∗mϕ′
m

(
P∑

p=1

apmtp

)
+

Mdep∑

m=1

ap∗Mind+m

∂ϕW

(∑P
p=1 apMind+1tp, . . . ,

∑P
p=1 apM tp

)

∂ωm
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=

Mind∑

m=1

ap∗m 6=0

ap∗mϕ′
m

(
P∑

p=1

apmtp

)
+ i

Mdep∑

m=1

ap∗Mind+m 6=0

ap∗Mind+m

E
[
Wm exp

(
i
∑Mdep

m′=1 Wm′

∑P
p=1 apMind+m′tp

)]

E
[
exp

(
i
∑Mdep

m′=1 Wm′

∑P
p=1 apMind+m′tp

)]

=
∑

ap∗m 6=0

ap∗mϕ′
m

(
I (ap∗m 6= 0)

P∑

p=1

apmtp

)

+ i
∑

ap∗Mind+m 6=0

ap∗Mind+mE


Wm exp


i

Mdep∑

m′=1

Wm′I (Um∗ ∈W or ap∗Mind+m′ 6= 0)
P∑

p=1

apMind+m′tp

+i

Mdep∑

m′=1

Wm′I (Um∗ /∈W and ap∗Mind+m′ = 0)

P∑

p=1

apMind+m′tp





/

E


exp


i

Mdep∑

m′=1

Wm′

P∑

p=1

apMind+m′tp






=
∑

ap∗m 6=0

ap∗mϕ′
m (I (ap∗m 6= 0)A′

mt)

+ i
∑

ap∗Mind+m 6=0

ap∗Mind+mE


Wm exp


i

Mdep∑

m′=1

Wm′I (Um∗ ∈W or ap∗Mind+m′ 6= 0)A′
Mind+m′t

+i

Mdep∑

m′=1

Wm′I (Um∗ /∈W and ap∗Mind+m′ = 0)A′
Mind+m′t





/

E


exp


i

Mdep∑

m′=1

Wm′A′
Mind+m′t






=
∑

ap∗m 6=0

ap∗mϕ′
m

(
AU,p∗,m∗

m t
)

+ i
∑

ap∗Mind+m 6=0

ap∗Mind+mE


Wm exp


i

Mdep∑

m′=1

Wm′AU,p∗,m∗

Mind+m′t

+i

Mdep∑

m′=1

Wm′I (Um∗ /∈W and ap∗Mind+m′ = 0)A′
Mind+m′t





/

E


exp


i

Mdep∑

m′=1

Wm′A′
Mind+m′t






where the third equality holds because I (Um∗ ∈W or ap∗Mind+m′ 6= 0)+ I (Um∗ /∈W and ap∗Mind+m′ = 0) ≡ 1

and the last equality follows from the definition of AU,p∗,m∗

.

Consider two cases:

1. Um∗ ∈ W . Hence, I (Um∗ /∈W and ap∗Mind+m′ = 0) = 0 and I (Um∗ ∈W or ap∗Mind+m′ 6= 0) = 1. Let

t = sem
∗

from assumption 3ii. then

∂ϕY (t)

∂tp∗

=
∑

ap∗m 6=0

ap∗mϕ′
m (0) + i

∑

ap∗Mind+m 6=0

ap∗Mind+m
E [Wm exp (iUm∗s)]

E [exp (iUm∗s)]
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= i
∑

ap∗m 6=0

ap∗mE [Zm] + i
∑

ap∗Mind+m 6=0

ap∗Mind+m
E [E [Wm|Um∗ ] exp (iUm∗s)]

E [exp (iUm∗s)]

= i
∑

ap∗m 6=0

ap∗mE [Zm] + i
∑

ap∗Mind+m 6=0

Mind+m 6=m∗

ap∗Mind+mE [Wm]
E [exp (iUm∗s)]

E [exp (iUm∗s)]
+ ap∗m∗

iE [Um∗ exp (iUm∗s)]

E [exp (iUm∗s)]

= i
∑

ap∗m 6=0

ap∗mE [Zm] + i
∑

ap∗Mind+m 6=0

Mind+m 6=m∗

ap∗Mind+mE [Wm] + ap∗m∗

iE [Um∗ exp (iUm∗s)]

E [exp (iUm∗s)]

= i
∑

ap∗m 6=0

ap∗mE [Zm] + i
∑

ap∗Mind+m 6=0

Mind+m 6=m∗

ap∗Mind+mE [Wm] + ap∗m∗

∂ lnE [exp (iUm∗s)]

∂s

= i
∑

ap∗m 6=0

ap∗mE [Zm] + i
∑

ap∗Mind+m 6=0

Mind+m 6=m∗

ap∗Mind+mE [Wm] + ap∗m∗ϕ′
m∗(s)

where the first equality follows from the choice of t and Assumption 3ii., the second equality follows from

ϕ′
m(0) =

φ′
m(0)

φm(0) = iE[Zm] and the third equality follows from Assumption 3iii. E [Wm|Um∗ ] = E [Wm].

By the second fundamental theorem of calculus

ϕm∗(s) = ϕm∗(0) +

∫ s

0

ϕ′
m∗(u)du =

1

ap∗m∗



∫ s

0

∂ϕY (ue
m∗

)

∂tp∗

du− is

Mind∑

m=1

ap∗mE[Zm]− is

Mdep∑

m=1

Mind+m 6=m∗

ap∗Mind+mE[Wm

φm∗(s) = exp




1

ap∗m∗



∫ s

0

iE
[
Yp∗ exp(iu

∑P
p=1 e

m∗

p Yp)
]

φY (uem
∗)

du− is

Mind∑

m=1

ap∗mE[Zm]− is

Mdep∑

m=1

Mind+m 6=m∗

ap∗Mind+mE[Wm]







where I used

∂ϕY (t)

∂tp∗

=
∂φY (t)/∂tm∗

φY (t)
=

iE
[
Yp∗ exp(i

∑P
p=1 tpYp)

]

φY (t)

2. Um∗ /∈W . Hence, I (Um∗ /∈W and ap∗Mind+m′ = 0) = I (ap∗Mind+m′ = 0) and I (Um∗ ∈W or ap∗Mind+m′ 6= 0) =

I (ap∗Mind+m′ 6= 0). Let t = sem
∗

from assumption 3ii. then

∂ϕY (t)

∂tp∗

= ap∗m∗ϕ′
m∗ (s) +

∑

ap∗m 6=0

m 6=m∗

ap∗mϕ′
m (0)

+ i
∑

ap∗Mind+m 6=0

ap∗Mind+m

E
[
Wm exp

(
i
∑Mdep

m′=1 Wm′I (ap∗Mind+m′ = 0)
∑P

p=1 apMind+m′em
∗

p

)]

E
[
exp

(
i
∑Mdep

m′=1 Wm′I (ap∗Mind+m′ = 0)
∑P

p=1 apMind+m′em∗

p

)]
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= ap∗m∗ϕ′
m∗ (s) + i

∑

ap∗m 6=0

m 6=m∗

ap∗mE[Zm]

+ i
∑

ap∗Mind+m 6=0

ap∗Mind+m

E
[
E [Wm|W−p∗−m] exp

(
i
∑

ap∗Mind+m′=0 Wm′

∑P
p=1 apMind+m′em

∗

p

)]

E
[
exp

(
i
∑

ap∗Mind+m′=0 Wm′

∑P
p=1 apMind+m′em∗

p

)]

= ap∗m∗ϕ′
m∗ (s) + i

∑

ap∗m 6=0

m 6=m∗

ap∗mE[Zm] + i
∑

ap∗Mind+m 6=0

ap∗Mind+mE [Wm]

where the first equality follows from the choice of t and Assumption 3ii., the second equality follows from

ϕ′
m(0) =

φ′
m(0)

φm(0) = iE[Zm] and the third equality follows from Assumption 3iii. E [Wm|Wp∗m] = E [Wm].

By the second fundamental theorem of calculus

ϕm∗(s) = ϕm∗(0) +

∫ s

0

ϕ′
m∗(u)du =

1

ap∗m∗



∫ s

0

∂ϕY (ue
m∗

)

∂tp∗

du− is

Mind∑

m=1

m 6=m∗

ap∗mE[Zm]− is

Mdep∑

m=1

ap∗Mind+mE[Wm]




φm∗(s) = exp




1

ap∗m∗



∫ s

0

iE
[
Yp∗ exp(iu

∑P
p=1 e

m∗

p Yp)
]

φY (uem
∗)

du− is

Mind∑

m=1

m 6=m∗

ap∗mE[Zm]− is

Mdep∑

m=1

ap∗Mind+mE[Wm]







where I used

∂ϕY (t)

∂tp∗

=
∂φY (t)/∂tm∗

φY (t)
=

iE
[
Yp∗ exp(i

∑P
p=1 tpYp)

]

φY (t)

Regardless of the dependence structure of U and choices of B, p∗ and em
∗

, the expression for φm∗(s) takes the

form

φm∗(s) = exp


i



∫ s

0

∑
j CjE

[
Yj exp(iu

∑P
p=1 e

m∗

p Yp)
]

φY (uem
∗)

du− s

M∑

m=1

m 6=m∗

cp∗mE[Zm]− s

Mdep∑

m=1

m 6=m∗

cp∗Mind+mE[Wm]







where Cj and cp∗m, m = 1, . . . ,M are constants.

φm∗(s) is not identified if the absolute value of the argument inside the exponential is ∞. Notice that

|exp(iu)| ≤ 1 for u ∈ R so the reason that φm∗(s) is not identified is because as |u| → ∞, exp(iu) = cos(u) +

i sin(u) oscillates very rapidly.
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Assumption 3iii., E[|Um|] <∞, m = 1, . . . ,M is too strong in some cases. A weaker condition is E[|Um|] <∞

when cp∗m 6= 0 and
∑

j |Cj |E [|Yj |] =
∑

j′ C
′
j′E [|Uj′ |] <∞.

Using Assumption 3iii. and |exp(iu)| ≤ 1 for u ∈ R

|φm∗(s)| ≤ exp



∫ s

0

∣∣∣∣∣∣

i
∑

j CjE
[
Yj exp(iu

∑P
p=1 e

m∗

p Yp)
]

φY (uem
∗)

∣∣∣∣∣∣
du+ |s|

M∑

m=1

m 6=m∗

|cp∗m|E[|Zm|] + |s|
Mdep∑

m=1

m 6=m∗

|cp∗Mind+m|E[|Wm|]




≤ exp

(
C̃1

∫ s

0

1

|φY (uem
∗)|du+ |s|C̃2

)

for some positive finite constants C̃1 and C̃2. This final expression is finite if and only if
∫ s

0
1

|φY (uem∗ )|du <∞.

A common assumption in the literature is that |φUm
(u)| 6= 0 for all u in their support and all unobservables.

Because integration over u allows φUm
to take arbitrary values on sets of zero Lebesgue measure and have

no effect on the integral, control over every single point in the space is excessive. Furthermore, φY (ue
m∗

) =

φY ′em∗ (u) = E
[
exp(iuY ′em

∗

)
]
= E

[
exp(iu(AU)′em

∗

)
]
= φ(AU)′em∗ (u) so only the characteristic function of

(AU)′em
∗

needs to be restricted. Evdokimov and White (2011) notice these weaker restrictions and allow

some of the unobservables to have isolated zeros and others to have no zero restrictions. Another possibility

is to assume that
∫
Sm∗

1
|φY (uem∗ )|du < ∞ where Sm∗ is the support of φm∗ (this is an absolute-integrability

condition).

I now bound |φm∗(s)| using Assumption 3iv., which includes isolated zeros and the absolute-integrability

condition as special cases. By Assumption 3iv., if
∫
X
|φY ′em∗ (s)|ds = 0 then

∫
X
|φm∗(s)|ds = 0 for all sets

X of nonzero Lebesgue measure. Assume |φY (0)| = 0 and there are no sets X between 0 and s where
∫
X
|φY ′em∗ (s)|ds = 0.17 By Assumption 3iv.

|φm∗(s)| ≤ exp

(
C̃1

∫ s

0

1

|φY (uem
∗)|du+ |s|C̃2

)
<∞

Finally, there is a bijection between the density and characteristic function of Um∗ . The density of Um∗ for

all u in the support of Um∗ is identified by the inverse Fourier transform,

fm∗(u) =
1

2π

∫
e−isuφm∗(s)ds

The unobservables are identified sequentially so sometimes identification of nuisance random variables can

be avoided. Other times Um∗ will not be identified from Theorem 1 but another unobservable Um∗∗ , m∗∗ 6= m∗

is identified. If Um∗∗ satisfies some independence conditions then Um∗∗ is treated as observed, included as part of

17If there are sets X between 0 and s then the lower limit of integration needs to change.
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Y and Um∗ is identified from a smaller system of equations. Thus, identification can be achieved by recursively

using Theorem 1 and moving identified unobservables that satisfy some independence conditions to the left

hand side of the equation. Example 1 Estimator B, Example 1 Estimator C and Example 3 use this recursive

technique for identification.

φm∗ is overidentified if B, p∗ or the solution em
∗

are not unique (note that B and p∗ can be different for

different m∗). In addition to the expressions for identification in this paper there are several other identification

strategies which lead to even more ways to express the unobservable distributions. For example, Bonhomme and

Robin (2010) identify unobservables using the second-order partial derivatives of the observable characteristic

functions (which leads to an infinite number of solutions). Carrasco and Florens (2010) base their estimator of

an unobservable distribution on the spectral decomposition of the convolution operator.

Therefore, I provide an algorithm for the practitioner to choose B, p∗ and em
∗

and identify φm∗ using

Theorem 1:

1. Choose B so that BA is in reduced row echelon form with Um∗ as one of the free variables.

2. Check Assumption 3 for p∗ = 1, . . . , P and choose em
∗

= Ap∗m∗+em∗ where Ap∗m∗+ is the Moore-Penrose

pseudoinverse.18

3. An estimator is then based on the expressions in Theorem 1.

I now return to the three empirical illustrations from the Model and Assumptions section and identify the

unobservables.

Example 1: Measurement Error With Two Measurements (Continued)

Applying B, p∗ and em
∗

from the Model and Assumptions section and Theorem 1, the characteristic functions

of the unobservables are expressed as functionals of observable first order partial derivatives of log characteristic

functions:

Estimator A: φX∗(s) = exp

(∫ s

0

iE [Y1 exp(iuY2)]

φY2
(u)

du− isE [ε1]

)

Estimator B: φX∗(s) =
φY1

(s)

φε1(s)
where φε1(t) = exp

(∫ s

0

iE [Y1 exp(iu(Y1 − Y2))]

φY1−Y2
(u)

du− isE [X∗]

)

Estimator C: φX∗(s) =
φY1

(s)

φε1(s)
where φε1(t) = exp

(∫ s

0

iE [(Y1 − Y2) exp(iuY1)]

φY1
(u)

du+ isE [ε2]

)

All the estimators are similar in spirit to the expression in Kotlarski (1967). In the economics literature,

Estimator A is used by Li and Vuong (1998) and Cunha, et al. (2010), Estimator B is used by Evdokimov

18The Moore-Penrose pseudoinverse is available as a built-in function in MATLAB.
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(2011) and Estimator C I have not seen in the economics literature.

The three estimators convey different intuition for identification of the distribution of X∗. In Estimator A,

the term inside the integration, iE[Y1 exp(iuY2)]
φY2

(u) = ∂ lnφY

∂t1

∣∣∣
(0,u)

, is the partial derivative of the log characteristic

function of Y with respect to the first argument evaluated at (0, u). The partial derivative with respect to the

first argument leads to small changes in the log characteristic functions of the random variables in the equation

Y1 = X∗ + ε1, which are lnφY1
, lnφX∗ and lnφε1 . The small change in lnφX∗ leads to a small change in lnφY2

because Y2 = X∗ + ε2. The small change in lnφY2
is determined by evaluation at (0, u) (and is only caused by

lnφX∗ because ε2 is independent of (X∗, ε1)) and identifies the derivative of lnφX∗ and in turn the distribution

of X∗. Loosely speaking, one “moves” the first equation and observes the second equation. The “movement”

in the first equation causes X∗ and ε1 to move. X∗ leads to “movement” in the second equation (that is not

caused by ε2), so by observing the second equation X∗ is identified.

In Estimator B, ε1 is identified by “moving” Y1 = X∗ + ε1 and observing Y1 − Y2 = ε1 − ε2, which “moves”

only because of ε1. In Estimator C, ε1 is identified by “moving” Y3 = Y1 − Y2 = ε1 − ε2, and observing

Y1 = X∗ + ε1, which “moves” only because of ε1. In both estimators X∗ is then identified from Y1 = X∗ + ε1

using deconvolution.

These are not the only possible expressions for φX∗ . For example, φX∗(t) = exp
(∫ t

0

(
iE[Y2 exp(iuY1)]

φY1
(u)

)
du− itE [ε2]

)

is also a solution.19. Bonhomme and Robin (2010) prove that for any e that satisfies Y ′e = e1Y1 + e2Y2 = 1,

φX∗ is identified by

φX∗(s) = exp

(∫ s

0

(
− iE [Y1Y2 exp(iuY

′e)]
φY ′e(u)

+
E [Y1 exp(iuY

′e)]
φY ′e(u)

E [Y2 exp(iuY
′e)]

φY ′e(u)

)
du+ isE [X∗]

)

It is not known which expression is the best but one objective of this paper is to use finite sample simulations

to compare Estimator A, Estimator B, Estimator C, the Bonhomme and Robin (2010) estimator with their

choice of e = ( 12 ,
1
2 ) (labeled Estimator D) and an estimator based on deconvolution when ε1 is known (labeled

Estimator E).

Estimator A is the only consistent estimator under the weaker conditions E[ε1] known, ε2 independent of

(X∗, ε1) and φY2
(u) = 0 on a set of zero Lebesgue measure.

More generally, it is not known what is the best estimator in the measurement error model with P ≥ 2

measurements of the unknown variable X∗

Xp = X∗ + εp, p = 1, . . . , P

19 iE[Y2 exp(iuY1)]
φY1

(u)
is the derivative of lnφY (u) with respect to the second argument evaluated at (u, 0) Hence, identification comes

from “moving” Y2 = X∗ + ε2 and observing Y1 = X∗ + ε1, which “moves” only because of X∗
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X∗, ε1, . . . εP mutually independent

In practice all but two of the observations are ignored. This seems like a waste of information. A solution of

φX∗(s) that uses all the observations is

φX∗(s) = exp



∫ s

0

iE
[
Y1 exp

(
iu 1

P−1

∑P
p=2 Yp

)]

φ( 1
P−1

∑
P
p=2 Yp)(u)

du− isE [ε1]




Example 2: Earnings Dynamics (Continued)

Applying B, p∗ and em
∗

from the Model and Assumptions section and Theorem 1, the characteristic functions

of the unobservables are expressed as functionals of observable first order partial derivatives of log characteristic

functions:

φη2
(s) = exp

(
−i
∫ s

0

E [Y2 exp (iuY1)]

φY1
(u)

du

)

φη3
(s) = exp

(
i

∫ s

0

E [Y2 exp (−iuY3)]

φY3
(−u) du

)

φε2(s) = exp

(
i

∫ s

0

(
E [Y1 exp (iu(Y1))]

φY1
(u)

+
E [Y2 exp (iu(Y1))]

φY1
(u)

+
E [Y3 exp (iu(Y1))]

φY1
(u)

)
du

)

φε3(s) = exp

(
−i
∫ s

0

E [Y2 exp (iu(Y1 + Y2 + Y3))]

φY1+Y2+Y3
(u)

du

)

φε4(s) = exp

(
i

∫ s

0

(
E [Y1 exp (iu(Y2))]

φY2
(u)

+
E [Y2 exp (iu(Y2))]

φY2
(u)

+
E [Y3 exp (iu(Y2))]

φY2
(u)

)
du

)

20 Most of the literature on earnings dynamics only identifies and estimates the variances of the persistent and

transitory shocks (see Hsiao (1986)). Horowitz and Markatou (1996) identify the distribution of an earnings

dynamics model without persistent shocks (εnt = 0) and independent identically distributed transitory shocks

(ηnt) using characteristic functions (deconvolution formulas). Bonhomme and Robin (2011) identify mutually

independent unobservables using second order partial derivatives of observable log characteristic functions.

20Explicit identification of η2, for example, follows from

∂ lnφY (u, 0, 0)

∂t2
=

E [i (−η2 + η3) exp (iuη2)]

E [exp (iuη2)]
+

E [iε3 exp (iuε2)]

E [exp (iuε2)]

= −
E [iη2 exp (iuη2)]

E [exp (iuη2)]
+

E [i exp (iuη2)E [η3|η2]]

E [exp (uη2)]
+

E [i exp (iuε2)E [ε3|ε2]]

E [exp (iuε2)]

= −
E [iη2 exp (iuη2)]

E [exp (iuη2)]

= −
∂ lnφη2 (u)

∂u

24



Example 3: Production Function (Continued)

Identification proceeds in three steps: First identify a and b, second identify the distribution of unobservables

and third identify the functions g and h.

For any l, l̄ (l 6= l̄) in the support of Lijt and any k, k̄ in the support of Kijt, a is identified by

a =
E
[
Yij2|Lij2 = l,Kij2 = k̄

]
− E

[
Yij2|Lij2 = l̄, Kij2 = k̄

]

E [Yij1|Lij1 = l,Kij1 = k]− E
[
Yij1|Lij1 = l̄, Kij1 = k

]

b is similarly identified.

Let X := (Lij1, Li′j′1, Lij′2, Li′j2,Kij1,Ki′j′1,Kij′2,Ki′j2) = (l, l̄, l, l̄, k, k̄, k̄, k) =: x, and apply B, p∗ and

em
∗

from the Model and Assumptions section and Theorem 1. The conditional characteristic functions of the

unobservables are expressed as functionals of the first order partial derivatives of log characteristic functions:

φεij1(s|X = x) = exp

(
i

∫ s

0

E
[
(abYij1 − bYij′2 + b2Yi′j′1 − aYi′j′2) exp (iu(Yij1))

]

abφYij1
(u)

du

)

φεij′2(s|X = x) = exp

(
i

∫ s

0

E
[
−abYij1 + bYij′2 − b2Yi′j′1 + aYi′j′2 exp (iu(Yij′2))

]

bφYij′2
(u)

du

)

φεi′j′1(s|X = x) = exp

(
i

∫ s

0

E
[
b2Yij1 − aYij′2 + abYi′j′1 − bYi′j′2 exp (iu(Yi′j′1))

]

abφYi′j′1
(u)

du

)

φεi′j2(s|X = x) = exp

(
i

∫ s

0

E
[
−b2Yij1 + aYij′2 − abYi′j′1 + bYi′j′2 exp (iu(Yi′j′2))

]

bφYi′j′2
(u)

du

)

φg(l,αi)(s|X = x) =
(
φεij1 (s)

) b2

a2−b2 exp

(
i

∫ s

0

E
[
(−b2Yij1 + aYij′2 − abYi′j′1 + bYi′j′2) exp (iuYij1)

]

(a2 − b2)φYij1
(u)

du

)

φg(l̄,αi′)
(s|X = x) =

(
φεij′2 (s)

) b

b2−a2

exp

(
i

∫ s

0

E
[
(−abYij1 + bYij′2 − b2Yi′j′1 + aYi′j′2) exp (iuYij′2)

]

(a2 − b2)φYij′2
(u)

du

)

φh(k,βj)(s|X = x) =
(
φεi′j′1 (s)

) ab

b2−a2

exp


i

∫ s

0

E
[
(a2Yij1 − aYij′2 + abYi′j′1 − bYi′j′2) exp (iuYi′j′1)

]

(a2 − b2)φY
i′j′1
(

u)

du




φh(k̄,βj′)
(s|X = x) =

(
φεi′j2 (s)

) a

a2−b2

exp

(
i

∫ s

0

E
[
(abYij1 − bYij′2 + a2Yi′j′1 − aYi′j′2) exp (iuYi′j′2)

]

(a2 − b2)φYi′j′2
(u)

du

)

The distributions are identified by the inverse Fourier transform.

The next step is to identify the functions g and h. Consider first a random effects model and identification

of g. Assume αi is independent of everything else, αi is uniformly distributed on [0, 1] and g(l, α) is increasing

in α for all l in the support of Lijt. I now use a result from Matzkin (2003). Let Qg(l,αi)|X=x(α|X = x) be the
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conditional quantile function (identified from the distributions). For all l in the support of Lijt and α ∈ (0, 1)

g(l, α) = g(l, Qαi|X=x(α|X = x)) = Qg(l,αi)|X=x(α|X = x)

where the first equality follows from the random effects assumption that αi is uniform and independent of

everything else and the second equality follows from the assumption that g is increasing in α. Similar assumptions

and arguments identify h.

Consider now a fixed effects model and identification of g. Assume g(l, α) is increasing in α for all l in

the support of Lijt, g(l̄, α) = α for all α and α is continuous. Suppose the same labor-individual works

with two capital-individuals over two periods and let X := (Lij1, Lij′1, Lij′2, Lij2,Kij1,Kij′1,Kij′2,Kij2) =

(l, l̄, l, l̄, k, k̄, k̄, k) =: x̄

Yij1 = g (l, αi) + h (k, βj) + εij1

Yij′2 = ag
(
l̄, αi

)
+ bh (k, βj) + εij′2

Yi′j′1 = g
(
l̄, αi

)
+ h

(
k̄, βj′

)
+ εi′j′1

Yi′j2 = ag (l, αi) + bh
(
k̄, βj′

)
+ εi′j2

then

(
1

b2 − a2

)(
b2Yij1 − aYij′2 + abYi′j′1 − bYi′j′2

)
= g (l, αi) +

(
1

b2 − a2

)(
b2εij1 − aεij′2 + abεi′j′1 − bεi′j2

)

(
1

b2 − a2

)(
abYij1 − bYij′2 + b2Yi′j′1 − aYi′j′2

)
= g

(
l̄, αi

)
+

(
1

b2 − a2

)(
abεij1 − bεij′2 + b2εi′j′1 − aεi′j2

)

Take the log characteristic functions on both sides and solve for φg(l,αi) and φg(l̄,αi) = φαi
(the equality follows

from the assumption that g(l̄, α) = α for all α)

φg(l,αi)(s|X = x̄) =

φ(
b2Yij1−aY

ij′2
+abY

i′j′1
−bY

i′j′2

b2−a2

)(s|X = x̄)

φ(
b2εij1

b2−a2

)(s|X = x)φ(
−aε

ij′2

b2−a2

)(s|X = x)φ(
abε

i′j′1

b2−a2

)(s|X = x)φ(
−bε

i′j2

b2−a2

)(s|X = x)

φαi
(s|X = x̄) =

φ(
abYij1−bY

ij′2
+b2Y

i′j′1
−aY

i′j′2

b2−a2

)(s|X = x̄)

φ(
abεij1

b2−a2

)(s|X = x̄)φ(
−bε

ij′2

b2−a2

)(s|X = x̄)φ(
b2ε

i′j′1

b2−a2

)(s|X = x̄)φ(
−aε

i′j2

b2−a2

)(s|X = x̄)

where both equalities follow from mutual independence of αi, εij1, εij′2, εi′j′1 and εi′j2. The characteristic

functions on the right hand side were identified in the second step so the characteristic functions and distributions
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of g (l, αi) and αi are also identified. For all l in the support of Lijt and α ∈ (0, 1), the structural function

g (l, α) is now identified by

g(l, α) = g(l, Qαi|X=x̄(Fαi|X=x̄(α|X = x̄)|X = x̄)) = Qg(l,αi)|X=x̄(Fαi|X=x̄(α|X = x̄)|X = x̄)

where the first equality follows because Q is the inverse of F and α is continuous and the second equality follows

from the assumption that g is increasing in α. Similar assumptions and arguments identify h.21

Evdokimov (2011) considers the model Yit = m(Xit, αi)+ εit and identifies m from a panel data with T = 2

and Xi1 = Xi2 = x. His novel interpretation of Kotlarski’s result is one of the inspirations for this paper. The

production function example is a generalization of Evdokimov (2011) with multiple unobserved heterogeneity.

The second and third step are almost the same as Evdokimov’s.

4 Estimation

The proof of Theorem 1 is constructive so sample analogs are used to replace unknown population quantities.

Given i.i.d observations {Y1, . . . , YN} where Yn = (Yn1, . . . , YnP ), estimate characteristic functions φY (t) =

E [exp (iY ′t)] by

φ̂Y (t) = EN [exp (iY ′t)] =
1

N

N∑

n=1

exp (iY ′
nt)

and estimate first-order partial derivatives of characteristic functions with respect to the pth argument ∂φY (t)
∂tp

=

iE [Yp exp (it
′Y )] by

φ̂Y p(t) =
∂̂φY (t)

∂tp
= iEN [Yp exp (iY

′t)] =
i

N

N∑

n=1

Ynp exp (iY
′
nt)

All the characteristic functions take the form

φm∗(s) = exp


i

∫ s

0

∑
j CjE

[
Yj exp(iuY

′em
∗

)
]

E [exp (iuY ′em∗)]
du− is

M∑

m=1

m 6=m∗

cp∗mE[Zm]− is

Mdep∑

m=1

m 6=m∗

cp∗Mind+mE[Wm]




E[Um],m = 1, . . . ,M , is known so assume E[Um] = 0. Each term in the summation of
∑

j CjE
[
Yj exp(iuY

′em
∗

)
]

is dealt with in the same way so to avoid unnecessary complicating the notation assume Cp∗ = 1 and Cp = 0

21An alternative proof uses h(k̄, β) = 0 for all β and follows Evdokimov (2011).
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when p 6= p∗. The characteristic function

φm∗(s) = exp

(
i

∫ s

0

E
[
Yp∗ exp(iuY ′em

∗

)
]

E [exp (iuY ′em∗)]
du

)

is estimated by

φ̂m∗(s) = exp

(
i

∫ s

0

EN

[
Yp∗ exp

(
uY ′em

∗)]

EN [exp (iuY ′em∗)]
du

)

The density of Um∗ is obtained by inverting the characteristic function using the inverse Fourier transfor-

mation,

fm∗(u) =
1

2π

∫
e−isuφm∗(s)ds

This integral does not converge when the characteristic function is replaced by its sample analog so the integral

is truncated on a compact interval [−SN , SN ] with SN →∞ as N →∞. The density of Um∗ is estimated by

f̂m∗(u) =
1

2π

∫
e−ituφ̂m∗(s)φK (shN ) ds

where φK(s) =
∫
exp(isu)H(u)du is the Fourier transform of a kernel K supported on [−1, 1] and hN = 1

SN
is

the bandwidth of the kernel. The kernel leads to relatively slow convergence rates but solves any irregularity

problems by smoothing the estimator. I use the second order kernel

K(u) =
48 cos(u)

πu4

(
1− 15

u2

)
− 144 sin(u)

πu5

(
2− 5

u2

)

whose Fourier transform is

φK(s) = (1− s2)3I(s ∈ [−1, 1])

This kernel is often used in the deconvolution literature (see Delaigle and Gijbels (2002)).

Computing f̂m∗(u) requires two integrations: one integration to recover the φm∗ and another integration to

perform the inverse Fourier transform. When φY is small there is rapid oscillation. To keep the estimation stable

I use the trapezoid rule for integration (which is slower but more robust than some other approximate integration

techniques) and divide the interval into 1, 000 grid points of integration (this is particularly important when

the characteristic function has isolated zeros). The choice of bandwidth is a topic that I do not investigate in
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this paper but the simulations suggest that this is an important topic of research. When the bandwidth is too

large the confidence intervals are wide because convergence is unstable when φY is small, which causes φm∗ to

oscillate rapidly and hence inaccurate estimation. When the bandwidth is too small the estimated density is far

from the theoretical density because too much of the tail of φm∗ is ignored. For every choice of an underlying

theoretical density, the median estimator gave very good approximations so there was no need to adjust the

estimator to deal with instances when the characteristic function had countably many zeros. Nevertheless, the

confidence bands around the median were large when characteristic functions were small. This can be dealt

with by having bands around zero that approach zero as N →∞ as in Hu and Ridder (2010).

5 Asymptotic Theory

In this section, I study the asymptotic properties of the estimator f̂m∗ . I will show that f̂m∗ is a uniformly

consistent estimator of fm∗ . The proofs are in the Appendix and are similar to Bonhomme and Robin (2010).

Characterizing the asymptotic properties of f̂m∗ proceeds in three steps. Lemma 1 and Lemma 2 bound

sup
t∈[−T,T ]P

|EN [Yp exp (iY
′t)]− E [Yp exp (iY

′t)]| and sup
t∈[−T,T ]P

|EN [exp (iY ′t)]− E [exp (iY ′t)]|

Theorem 1 uses Lemma 1 and Lemma 2 to bound

sup
s∈[−T,T ]

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣

and Theorem 2 uses Theorem 1 to bound

sup
u

∣∣∣f̂m∗(u)− fm∗(u)
∣∣∣

These upper bounds provide sufficient conditions for consistency and help understand which estimators have

fastest uniform convergence rates.

Lemma 1. Let F denote the cumulative distribution function of Y and FN the empirical cumulative distribution

function corresponding to a sample (Y 1, . . . , Y N ) of N independent identically distributed draws from F . Assume

E[|Yp|2] <∞, p = 1, . . . , P . Let

TN = C1N
δ/2 C1, δ > 0

εN = C2
lnN√
N
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where C2
2 > 64(2 + P (1 + δ)) then

sup

∣∣∣∣∣
∂̂φY (t)

∂tp
− ∂φY (t)

∂tp

∣∣∣∣∣ < εN a.s.

when N tends to infinity.22

As N → ∞, Lemma 1 bounds the estimation error on φY p on the compact interval [−TN , TN ]P by

O
(
lnN/

√
N
)
provided that TN does not grow faster than some power of N .23

The strategy in the proof is standard for finding uniform convergence rates in the empirical processes

literature. First, restrict the problem to a compact space that expands as N increases. A “divide and conquer”

strategy is applied by dividing the problem into two components: one component where the second moment is

larger than MN and one component where the second moment is smaller than MN (MN grows at an appropriate

rate). When the second moment is larger than MN , use a Chernoff bound to show that the probability of this

event goes to zero. When the second moment is smaller than MN , first use the Heine-Borel theorem (which

states that any open cover of a compact space has a finite subcover) to cover the space by a finite number of

arbitrarily small balls. At the center of each ball, bound the probability that the distance between φ̂Y p and

φY p (the estimation error of φY p) is bigger than any ε > 0 using an exponential-type bound. Because every

point is arbitrarily close to the center of one of the balls, this implies that the estimation error at every point is

bounded. The last step is to use the Borel-Cantelli lemma to show that the event that the estimation error is

large happens only a finite number of times so for large enough N the estimation error is small almost surely.

Lemma 2. Let

TN = C̃1

(
lnN

N

) 1
2

N
δ̃
2 C̃1 > 0, δ̃ > 1

εN = C̃2

(
lnN

N

) 1
2

where C̃2
2 > 64(2 + P δ̃) then

sup
∣∣∣φ̂Y (t)− φY (t)

∣∣∣ < εN a.s.

when N tends to infinity.

As N → ∞, Lemma 2 bounds the estimation error on the compact interval [−TN , TN ]P by O
((

lnN
N

) 1
2

)

22To simplify notation I suppress the subscript t ∈ [−TN , TN ]P in supt∈[−TN ,TN ]P unless there is some ambiguity or the sup is
not over this region.

23ZN = O (aN ) means that there exists C > 0 such that ZN ≤ CaN .
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provided that TN does not grow too quickly. The rate of convergence is the same as Horowitz and Markatou

(1996).24 The rate of convergence is faster than Lemma 1 but the choices of TN and εN from Lemma 1 also

lead to uniform convergence to φY (t).

The main difference between the proof of Lemma 1 and Lemma 2, is that in the proof of Lemma 2 I do not

control the size of the second moment (or any moment because the argument in the expectation | exp(iY ′t)| ≤ 1).

Hence, there is no divide and conquer strategy and the proof starts by using the Heine-Borel theorem and from

there proceeds identically to the proof of Lemma 1.

When the support of φY (t) is bounded, Li and Vuong (1998) bound supt

∣∣∣φ̂Y (t)− φY (t)
∣∣∣ byO

(
(ln lnN/N)

1
2

)
.25

The slower convergence rates of Lemma 1 and Lemma 2 are because εN cannot shrink too quickly relative to

the growing compact space [−TN , TN ]P .

When the support of φY (t) is unbounded, Bonhomme and Robin (2010) bound

sup
∣∣∣φ̂Y (t)− φY (t)

∣∣∣ , sup

∣∣∣∣∣
∂̂φY (t)

∂tp
− ∂φY (t)

∂tp

∣∣∣∣∣ and sup

∣∣∣∣∣
̂∂2φY (t)

∂tp1
∂tp2

− ∂2φY (t)

∂tp1
∂tp2

∣∣∣∣∣

with the same bounds as Lemma 1. An important assumptive difference is no moment restrictions when

bounding the uniform convergence rate of φ̂Y (t), E[|Y 2
p |] finite when bounding the uniform convergence rate of

∂̂φY (t)
∂tp

and E[|Y 4
p |] finite when bounding the uniform convergence rate of ∂̂2φY (t)

∂t2p
.

Theorem 2. Define (A)+ = max {A, 0}. Choose εN and TN according to Lemma 1 then there exists C7 > 0

such that

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣ ≤ C7εN

∫ SN

−SN

1

|φY (ue∗)| (|φY (ue∗)| − εN )
+ du

where for consistency εN
∫ SN

−SN

1

|φY (uem∗ )|(|φY (uem∗ )|−εN)
+ du goes to zero as N →∞.26

The rate of uniform convergence to φm∗(s) depends on SN , φY and the relative sizes of |φY | and εN . The

main concern in estimation is similar to the concern in identification; large
∫ s

0
1

φ̂Y (ue∗)
du or equivalently φ̂Y

small on sets of nonzero Lebesgue measure. This leads to rapid and large oscillations in the estimator that

makes it hard to get accurate estimations.

For large enough N , small φY implies small φ̂Y . Hence, convergence rates are slower when φY is small over

sets of nonzero Lebesgue measure. In a seminal paper, Fan (1991) distinguishes two classes of distributions with

different convergence rates: if φY has no zeros but decays at an exponential rate then φY has thin tails and fY

24Hu and Ridder (2010) noticed that Horowitz and Markatou (1996) use Pollard (1984) without taking into account a correction
for unbounded support. I obtain the same convergence rates with this correction.

25For bounded support a proof can be based on Csörgo (1981).
26Sometimes the faster convergence rates in Lemma 2 apply.
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is called super-smooth. If φY has no zeros but decays at a polynomial rate then φY has fat tails and fY is called

ordinary-smooth. φm∗ is harder to estimate when fY is super-smooth because φY approaches zero faster.

When |φY | is smaller than εN then the εN neighborhood around φY includes zero. Uniform convergence is

a “worst case” type of convergence rate so if φ̂Y can be zero it will be. Hence, if |φY | < εN on sets of nonzero

Lebesgue measure then the estimator will not converge uniformly.

Hu and Ridder (2010) solve the problem of |φY | < εN by restricting |φ̂| > ηN , with ηN > 0 converging

to zero. In the Monte Carlo Simulations section I did not modify the estimator and had no issues when the

characteristic function of a distribution (e.g. uniform) had countably many zeros. This is possibly because

uniform convergence is too strong a criteria for convergence.

SN effects the uniform convergence rate in two ways. Integration causes errors to accumulate so as SN

increases the convergence rate decreases.27 As SN increases in a neighborhood around 0 or becomes large, φY

shrinks and the convergence rate decreases.

Importantly, the uniform convergence rate also depends on the shape of φm∗ itself. If φm∗ , for example,

has bounded support then even if φY is unbounded, the values of φY outside the support of φm∗ have no effect

(because of the limits of integration). In general, a super-smooth fm∗ and an ordinary-smooth fY leads faster

convergence rates. Super-smooth fm∗ means that the tails of φm∗ are thin so most the mass of φm∗ is near the

origin so that the weights on the basis functions exp(−isu) become small very quickly and have little impact

on the estimate of fm∗ . Furthermore, any information in the tail of φY is relatively larger than φm∗ because

φY has fatter tails than φm∗ .

I compare the uniform convergence rate of Theorem 1 to some other estimators in the deconvolution lit-

erature. There are three criteria that effect convergence rates and distinguish estimators: 1. the support of

φX∗ (bounded or unbounded) 2. the functions used in the estimator (estimators can be functionals of char-

acteristic functions, first order partial derivatives of characteristic function, second-order partial derivatives of

characteristic functions or other spectral decompositions of the convolution operator) 3. smoothness of fY and

smoothness of fm∗ (Recently, the literature also makes a distinction between vanishing and nonvanishing char-

acteristic functions but I think the speed at which φY and φm∗ approach zero is the dominant factor affecting

convergence).

Li and Vuong (1998) and Bonhomme and Robin (2010) consider the measurement error model with two

measurements and φX∗ and φεp , p = 1, 2 ordinary-smooth (this implies that φY (s) = s−β , β > 1). Li and

Vuong (1998) assume that φX∗ has bounded support and their estimator is a functional of (nonvanishing)

characteristic functions. They obtain a uniform convergence rate of O
((

N
ln lnN

)− 1
2+α

)
, 0 < α < 1

2 . Bonhomme

27Notice the difference between TN and SN . [−TN , TN ]P is the growing compact support of the P-dimensional variable t, which
is the domain of φY while [−SN , SN ] is the growing compact support of s, which is the domain of φm∗ .
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and Robin (2010) assume that φX∗ has unbounded support and their estimator is a functional of second-order

partial derivatives of the characteristic functions. They obtain a uniform convergence rate of O
(

lnN

N
1
2
−(1+ 3

2
β)δ

)
.

By Theorem 1, I obtain a uniform convergence rate of O
(

lnN

N
1
2
−( 1

2
+β)δ

)
which is faster than Bonhomme and

Robin (2010) because I use φY p rather than ∂2φY

∂p1∂p2
but slower than Li and Vuong (1998) because of their

bounded support assumption.

Theorem 3. Choose εN and TN according to Lemma 1 and assume the convergence rate from Theorem 1

applies then there exists C8 such that

sup
u

∣∣∣f̂m∗(u)− fm∗(u)
∣∣∣

≤ SNC7εN
π

∫ SN

−SN

1

|φY (ve∗)| (|φY (ve∗)| − εN )
+ dv +

1

2π
sup

s∈[−1,1]

|m(s)|hq
N

∫ SN

−SN

|s|q|φm∗(s)|ds

+
1

2π

∫ −SN

−∞
|φm∗(s)|ds+ 1

2π

∫ ∞

SN

|φm∗(s|)ds

where for consistency εN
∫ SN

−SN

1

|φY (vem∗ )|(|φY (vem∗ )|−εN)
+ dv goes to zero as N →∞.

The rate of uniform convergence of f̂m∗(u) depends on four components: the characteristic function of

observables φY (and the relative size of φY and εN ), the Fourier transform of the kernel φK , the characteristic

function of the unobservable φm∗ and SN . The first component is the estimation error of φm∗ and the last three

terms are the loss because of the inversion.

The effect of φY (and the relative size of φY and εN ) is through the first term, which is the estimation error

of φm∗ . The effects are thus the same as in Theorem 1: small φY makes the first term big and leads to a slower

convergence rate.

The second term results from the smoothing kernel. This term eventually approaches zero. The choice of

bandwidth, is an important choice parameter but beyond the scope of this paper.

The other components have an ambiguous effect on the uniform convergence rate of f̂m∗(u) because of the

way they interact with other components in each term. The tension between large and small SN arises because

large SN makes the last two terms (the tails) smaller but the first term (estimation error for φm∗) and second

term (the inverse of the smoothing kernel) bigger.

If fm∗ is super-smooth then the last two terms are smaller because φm∗ decays quickly but the first term is

bigger because φm∗ is harder to estimate and the second term is bigger because φm∗ is relatively big near the

origin.

Many of the estimators in the literature, like the estimator in this paper, integrate over the inverse of φY .

Thus, a heuristic argument for an estimator with the fastest uniform convergence rate will make φY (s) large
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where φm∗(s) is large because φY (s) is the marginal information for φm∗(s). The decay of the inverse Fourier

transform due to e−isu also suggests that accurate estimates of φm∗(s) near the origin are more important

because they get more weight.

In the deconvolution literature, Carroll and Hall (1988) and Fan (1991) consider the model Y = X∗+ε where

the distribution of ε is known. They obtain logarithmic rates of convergence O
(
(lnN)

−2(m+α−l)/β
)
when fX∗

is super smooth and fY is ordinary smooth.

Bonhomme and Robin (2010) consider the measurement error model with two measurements where fX∗

and fY are ordinary smooth(φY (s) = s−β , β > 1 and φm∗(s) = s−α, α > 1). To simplify the problem

they assume the kernel that corresponds to φK(s) = I(s ∈ [−1, 1]) and obtain the uniform convergence rate

O
(

lnN

N
1
2
− 3

2
(1+β)δ

+ 1
Nδ2(α−1)

)
. By Theorem 2, the uniform convergence is O

(
lnN

N
1
2
−(1+β)δ

+ 1
Nδ2(α−1)

)
, which is

faster than Bonhomme and Robin (2010).

More generally, Bonhomme and Robin (2010) consider the same multi-factor model as in this paper and

obtain a uniform rate of convergence of
C1S

3
NεN

g(SN )3 + C2

Sq
N
2π

∫ SN

−SN
|s|q|φm∗(s)|ds + 2

∫∞
SN
|φm∗(s)|ds. At first this

might seem slower than other convergence rates but notice that the first term is very small for values of SN

near the origin. If enough of the distribution is identified in the neighborhood [−1, 1] (where S3
N

g(SN )3 is small)

then their estimator converges very quickly. Thus super-smooth distributions will probably converge fastest

using their estimator. The Monte Carlo simulations in the next section confirm this as the convergence rates

are fastest especially when the unobservables are normally distributed.

6 Monte Carlo Simulations

This section presents a Monte Carlo study of the finite sample properties of five estimators of the density of X∗

in the measurement error model with repeated measurements:

X1 = X∗ + ε1

X2 = X∗ + ε2

The data is generated from one of the following specifications of the distributions of X∗, ε1 and ε2
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Experiment fX∗ fε1 fε2

1 Norm(0,1) Norm(0,1) Norm(0,1)

2 Gamma(2,1) Norm(0,1) Norm(0,1)

3 Gamma(5,1) Norm(0,1) Norm(0,1)

4 Lognormal Norm(0,1) Norm(0,1)

5 400
403N(0, 1

2 ) +
3

403N(0, 406
6 ) Norm(0,1) Norm(0,1)

6 1
2N(−2, 1) + 1

2N(2, 1) Norm(0,1) Norm(0,1)

7 Norm(0,1) Norm(0,x∗2) Norm(0,1)

8 Unif(0,2) 0 0

where x∗2 (the variance of ε1 in Experiment 7) is the square of the value that is attained by the random variable

X∗ in each trial (hence X∗ and ε1 are dependent). I compare five estimators:

Estimator

A φ̂X∗(s) = exp
(∫ s

0
iEN [Y1 exp(iuY2)]
EN [exp(iuY2)]

du− isE [ε1]
)

B φ̂X∗(s) =
φY1

(s)

φ̂ε1
(s)

where φ̂ε1(t) = exp
(∫ s

0
iEN [Y1 exp(iu(Y1−Y2))]
EN [exp(iu(Y1−Y2))]

du− isE [X∗]
)

C φ̂X∗(s) =
φY1

(s)

φ̂ε1
(s)

where φ̂ε1(t) = exp
(∫ s

0
iEN [(Y1−Y2) exp(iuY1)]

EN [exp(iuY1)]
du+ isE [ε2]

)

D φ̂X∗(s) = exp

(∫ s

0

(
− iEN [Y1Y2 exp( iu

2 (Y1+Y2))]
EN [exp( iu

2 (Y1+Y2))]
+

EN [Y1 exp( iu
2 (Y1+Y2))]

EN [exp( iu
2 (Y1+Y2))]

EN [Y2 exp( iu
2 (Y1+Y2))]

EN [exp( iu
2 (Y1+Y2))]

)
du+ isE [X∗]

)

E φ̂X∗(s) =
φY1

(s)

φε1
(s)

where the first estimator is used by Li and Vuong (1998), the second estimator is used by Evdokimov (2011),

the third estimator is new, the fourth estimator is used by Bonhomme and Robin (2010) and the fifth estimator

is used by Hu and Ridder (2005).

Only Y1, . . . , YN is observed for Estimators A, B, C and D. Y1, . . . , YN is observed and the distribution of ε1

is known for Estimator E. Assume E[ε1] is known for Estimator A. Assume E[X∗] is known for Estimators B

and D and assume E[ε2] is known for Estimator C.

I generate 100 simulations of sample size N = 100, N = 1, 000 and N = 10, 000. The grid on the x-axis

is divided into 1, 000 equidistant grid points for integration in both characteristic function space and density

space.

The results are summarized graphically in Figures 1 to 8. Figure 1 reports the outcomes of 100 simulations

of sample size 1, 000 where the data is generated according to Experiment 1. The first column, is an estimate

of the real part of φX∗ , the second column is an estimate of the imaginary part of φX∗ and the third column

is an estimate of fX∗ . On each graph the thin solid line represents population quantities, the thick solid line
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represents the median of the simulations and the dashed lines represent the 10-90% pointwise confidence bands.

The first row depicts the results of Estimator A, the second row depicts the results of Estimator B, the third row

depicts the results of Estimator C, the fourth row depicts the results of Estimator D and the fifth row depicts

the results of Estimator E. Figures 2 to 8 are the same as Figure 1 except for Experiments 2 to 8.

To provide an indication of relative finite sample efficiencies of the estimators, Tables 1, 2 and 3 report the

mean integrated squared error (MISE) of each estimator for N = 100, N = 1, 000 and N = 10, 000 respectively

where

MISE = E

[∫ (
f̂X∗(x)− fX∗(x)

)2
dx

]

Overall the median estimators do very well. Estimators B and C are robust to isolated zeros (Experiment 8).

As expected, only Estimator A is consistent in Experiment 7 (due to dependence structure of unobservables).

Estimators B, C and E perform well when the distribution is bimodal (Experiment 6) while Estimator A

converges slowly and Estimator D does not converge. The confidence bands are wide when φX∗ is close to

zero for extended intervals as in Experiments 2 and 5 for example. The experiment with slowest convergence

rates is Experiment 4 (Lognormal) but notice that φ̂m∗ approximates φm∗ very well as can be seen from the

first two columns in Figure 4. The problem is in the inversion and even with the population characteristic

function I need very large SN for convergence. The characteristic function of the Lognormal distribution has

fat tails that impact the estimate of fX∗ but are hard to estimate accurately due to accumulation of estimation

error and although the tails are fat they are still relatively small (0.05 ≤ |φX∗(s)| ≤ 0.12 for 2 ≤ |s| ≤ 12).

Surprisingly, when the distribution of ε1 is known, convergence is not fastest. Estimator E performs poorly in

Experiments 2, 3 and 4 when the distributions are asymmetric (Gamma and Lognormal) and in Experiment 8

when the distribution is discontinuous (Uniform). Estimator D had the fastest convergence rates in Experiments

1 (Standard Normal), 2 (Gamma(2,1)) and 3 (Gamma(5,1)). Estimator D did not converge in Experiment 6

because of bimodality and Experiment 8 because of discontinuity (and is biased in Experiment 7). Estimator C

converges the fastest in experiments 6 (Bimodal), which is possibly because the choice of the matrix B creates

a third equation Y3 = Y1 − Y2, which perhaps averages errors. Estimator C probably also converges fastest in

Experiments 5 (Unimodal) and 8 (Uniform).

7 Conclusions

This paper presented techniques for nonparametrically identifying and estimating a short panel data model with

many unobservables and with some unobservables arbitrarily dependent. The paper derived the uniform rate

of convergence and presented a Monte Carlo study which suggests that the estimators are robust and perform
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well in finite samples.

The performance of the estimators depended critically on the shape of the unobservable and observable

distributions. The large number of available estimators makes the study of systematically identifying and

estimating the best estimator very interesting. This paper (and several others) suggests that zeros of the

operator are a major stumbling block and efficiency may come from trying to avoid them. An extension of this

paper is to model the equations as a known multivariate nonlinear function of unobservables. The choice of

bandwidth was not considered in this paper but the simulations suggest this is an important area to investigate.

Appendix

7.1 Proof of Identification from Bonhomme and Robin (2010)

Bonhomme and Robin (2010) assume the setup of Assumption 1, U1, . . . , UM mutually independent, E[Um] = 0

for m = 1, . . . ,M and a rank condition on a matrix related to A that will be defined later.

The characteristic function of Y is

φY1,...,YP
(t1, . . . , tP ) = E [exp i ((a11t1 + . . .+ aP1tP )U1 + . . .+ (a1M t1 + . . .+ aPM tP )UM )]

=

M∏

m=1

φUm

(
P∑

p=1

apmtp

)

where the first equality follows from the definition of the characteristic function and the second equality follows

from mutual independence. Take the natural logarithm of both sides and let ϕY (t) = lnφY (t), ϕm(t) =

lnφZm
(t), m = 1, . . . ,Mind. The first order partial derivatives are




∂ϕY (t)
∂t1
...

∂ϕY (t)
∂tP




=




a11 . . . a1M
...

. . .
...

aP1 . . . aPM







ϕ′
1

(∑P
p=1 ap1tp

)

...

ϕ′
M

(∑P
p=1 apM tp

)




The second order partial derivatives are




∂2ϕY (t)
∂t21
...

∂2ϕY (t)
∂tp1∂tp2

...

∂2ϕY (t)
∂t2

P




=




a211 . . . a21M
...

. . .
...

ap11ap21 . . . ap1Map2M

...
. . .

...

a2P1 . . . a2PM







ϕ′′
1

(∑P
p=1 ap1tp

)

...

ϕ′′
M

(∑P
p=1 apM tp

)




= (A ·A)




ϕ′′
1

(∑P
p=1 ap1tp

)

...

ϕ′′
M

(∑P
p=1 apM tp

)
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Assume Rank(A⊙A) = M .28 Let (A⊙A)+ be the Moore-Penrose pseudoinverse then

(A⊙A)+




∂2ϕY (t)
∂t21
...

∂2ϕY (t)
∂tp1∂tp2

...

∂2ϕY (t)
∂t2

P




=




ϕ′′
1

(∑P
p=1 ap1tp

)

...

ϕ′′
M

(∑P
p=1 apM tp

)




Denote the entries of (A⊙A)+ by a+pm, p = 1, . . . , P 2 and m = 1, . . . ,M . For any m∗

P∑

p1=1

P∑

p2=1

a+p1p2

∂2ϕY (t)

∂tp1
∂tp1

= ϕ′′
m∗(

P∑

p=1

apM tp)

For any (non-unique) t such that u
∑P

p=1 apM tp =: uem
∗

= u apply the second fundamental theorem of

calculus twice

ϕm∗(s) =

∫ s

0

∫ v

0

p∑

k=1

p∑

l=1

a+p1p2

∂2ϕY (ue
m∗

)

∂tp1
∂tp2

dudv

Hence,

φm∗(s) = exp (ϕm∗(s)) = exp

(∫ s

0

∫ v

0

p∑

k=1

p∑

l=1

a+p1p2

∂2ϕY (ue
m∗

)

∂tp1
∂tp2

dudv

)

and

∂2ϕY (ue
m∗

)

∂tp1
∂tp2

= −
(
E
[
Yp1

Yp2
eiuY

′em
∗ ]

φY ′em∗ (u) + E
[
Yp1

eiuY
′em

∗ ]
E
[
Yp2

eiuY
′em

∗ ])/
(φY ′em∗ (u))

2

This identifies the characteristic function of Um∗ for m∗ = 1, . . . ,M in terms of the observed second order

partial derivatives of log characteristic functions.

7.2 Proof of Lemma 1

Define the maximum norm ||Y ||∞ := max {|Y1| , . . . , |YP |} and . Let ft(Y ) = Yp exp (iY
′t), p = 1, . . . , P

Pr (sup |EN [ft]− E [ft]| > ε) = Pr
(
sup |EN [ft]− E [ft]| > ε EN ||Y ||2∞ ≥M

)
· Pr

(
EN ||Y ||2∞ ≥M

)

28This is the rank condition from Székely and Rao (2000) mentioned in the introduction that is necessary and sufficient for
identification of U .
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+ Pr
(
sup |EN [ft]− E [ft]| > ε EN ||Y ||2∞ < M

)
· Pr

(
EN ||Y ||2∞ < M

)

≤ Pr
(
EN ||Y ||2∞ ≥M

)
+ Pr

(
sup |EN [ft]− E [ft]| > ε EN ||Y ||2∞ < M

)

= A1 +A2

(i) Consider A1

Pr
(
EN ||Y ||2∞ ≥M

)
≤ E

[
exp

(
EN ||Y ||2∞

)]/
eM

= E

[
exp

(
1

N

N∑

n=1

||Yn||2∞

)]/
eM

=

N∏

n=1

E

[
exp

(
1

N
||Yn||2∞

)]/
eM

= E
[
e

1
N

||Yn||2∞
]N
/

eM

=

(
1 +

E ||Yn||2∞
N

+O
(

1

N

))N /
eM

where the first inequality follows from the use of a Chernoff bound, the second equality follows by indepen-

dence, the third equality follows because the random variables are identically distributed and the last equality

from a Taylor expansion around 0 as 1
N → 0 and the assumption that ||Yn||2∞ is finite. Now notice that

limN→∞
[
1 +

E||Y ||2∞
N +O

(
1
N

)]N
= eE||Y ||2∞ so choose N large enough so that

Pr
(
EN ||Y ||2∞ ≥M

)
≤
(
1 +

E ||Y ||2∞
N

+O
(

1

N

))N /
eM ≤ 2eE||Y ||2∞

eM

(ii) To bound A2 define the L1-covering number, N1(ε,Q,F), as the smallest L for which there exist functions

g1 . . . , gL such that minl EQ ‖f − gl‖ ≤ ε for all f ∈ F (Pollard (1984)).29

I will show that N1(ε,PN ,F) ≤ C3

(
TEN ||Yn||2∞

ε

)P
where PN is the empirical probability measure and F is

the class of functions defined as F =
{
ft(Y ) : t ∈ [−T, T ]P

}
where as before ft(Y ) = Yp exp (iY

′t), p = 1, . . . , P .

Discretize [−T, T ]P into L =
(

4TPEN ||Y ||2∞
ε

)P
points, t1, . . . , tL, by cutting [−T, T ] in each dimension into

equidistant segments of length ε
2PEN ||Yn||2∞

. Let gl(Y ) = Yp exp
(
iY ′tl

)
for t1, . . . , tL chosen above. For any

t ∈ [−T, T ]P there exists an l such that

EN

∣∣Yp exp (iY
′t)− Yp exp

(
iY ′tl

)∣∣ = EN

∣∣Yp cos (Y
′t) + iYp sin (Y

′t)− Yp cos
(
Y ′tl

)
− iYp sin

(
Y ′tl

)∣∣

29Q is a probability measure and F is a class of functions in L1(Q)
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≤ EN

∣∣Yp cos (Y
′t)− Yp cos

(
t′lY

)∣∣+ EN

∣∣iYp sin (Y
′t)− iYp sin

(
t′lY

)∣∣

≤ 2PEN

∣∣∣∣Yp

(
t′Y − t′lY

)∣∣∣∣
∞

≤ 2PEN ||YpY ||∞
∣∣∣∣t− tl

∣∣∣∣
∞

≤ 2PEN ||Y ||2∞
∣∣∣∣t− tl

∣∣∣∣
∞

≤ ε

It follows that the L1-covering number satisfies N1(ε, PN ,F) ≤ C3

(
TEN ||Y ||2∞

ε

)P
where C3 = (4P )P .

The L1-covering ensures that the value of ft(Y ) = Yp exp (iY
′t) for any point in [−T, T ]P is arbitrarily close

to at least one of gl(Y ) = Yp exp
(
iY ′tl

)
. Next I use a result from Pollard (1984) who uses an exponential-type

bound and the L1-covering number to bound Pr (sup |E [Yp exp (iY
′t)]− EN [Yp exp (iY

′t)]|).

By assumption E ||Y ||2∞ is bounded (and observed). Let N ≥ E||Y ||2∞
8ε2 then

Var (EN [ft]) =
1

N
Var

(
Yp exp

(
iY ′tl

))
≤ 1

N
E
[
Y 2
p

]
≤ 1

N
E ||Y ||2∞ ≤ 8ε2

Equations (30) and (31) in Pollard (1984) now apply so that

Pr
(
sup |EN [ft]− E [ft]| > ε EN ||Y ||2∞ < M

)
≤ 8N1 (ε/8, PN ,F) exp

(
−Nε2

128

/
max

l
EN

[
g2l
])

≤ C4

(
TEN ||Y ||2∞

ε

)P

exp

(
−Nε2

128

/
EN ||Y ||2∞

)

where C4 = 8C3 and the second inequality follows from

max
l

EN

[
g2l
]
= max

l

[
Y 2
p exp

(
i2Y ′tl

)]
≤ EN

[
Y 2
p

]
≤ EN ||Y ||2∞

Hence,

Pr
(
sup |EN [ft]− E [ft]| > ε EN ||Y ||2∞ < M

)
≤ C4

(
TM

ε

)P

exp

(
− Nε2

128M

)

For N large enough the bounds for A1 and A2 imply

Pr (sup |EN [ft]− E [ft]| > ε) ≤ A1 +A2 ≤
2eE||Y ||2∞

eM
+ C4

(
TM

ε

)P

exp

(
− Nε2

128M

)
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(iii) The last step is to apply the Borel-Cantelli Lemma so index ε, T and M by N and let

TN = C1N
δ/2 C1, δ > 0

εN = C2
lnN√
N

MN = (1 + α) lnN α > 0

For C2
2 > 64(1 + α)(2 + P (1 + δ)) and N large enough

Pr (sup |EN [ft]− E [ft]| > εN ) =
2eE||Y ||2∞

eMN
+ C4

(
TNMN

εN

)P

exp

(
− Nε2N
128MN

)

=
2eE||Y ||2∞

eMN
+ C4 exp

(
P ln

(
TNMN

εN

)
− Nε2N

128MN

)

=
2eE||Y ||2∞

e(1+α) lnN
+ C4 exp


P ln

(
C1N

δ/2(1 + α) lnN

C2
lnN√

N

)
−

N
(
C2

lnN√
N

)2

128(1 + α) lnN




=
2eE||Y ||2∞

N1+α
+ C4 exp

(
P ln

(
C1N

(δ+1)/2(1 + α)

C2

)
− C2

2 lnN

128(1 + α)

)

=
2eE||Y ||2∞

N1+α
+ C4 exp

(
P ln

(
C1(1 + α)

C2

)
+

[
P (1 + δ)

2
− C2

2

128(1 + α)

]
lnN

)

=
2eE||Y ||2∞

N1+α
+ C5 exp

([
P (1 + δ)

2
− C2

2

128(1 + α)

]
lnN

)

<
2eE||Y ||2∞

N1+α
+ C5 exp

(
− lnN1+β

)

≤ 1

N1+min{α,β}

(
2eE||Y ||2∞ + C5

)

=
C6

N1+min{α,β}

where C5 = C4

(
C1(1+α)

C2

)P
, C6 = 2eE||Y ||2∞ + C5 and C2

2 is chosen so that β := −P (1+δ)
2 +

C2
2

128(1+α) − 1 > 0.

The last equality follows from the assumptions that E ||Y ||2∞ is bounded.

For the above choices of εN , TN , MN and C2

∞∑

N=1

Pr (sup |EN [ft]− E [ft]| > εN ) < C6

∞∑

N=1

1

N1+min{α,β} <∞

The Borel-Cantelli lemma then implies that

sup |EN [ft]− E [ft]| ≤ εN a.s

for N large enough.
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7.3 Proof of Lemma 2

I will show that N1(ε,PN ,F) ≤ C̃3

(
T
ε

)P
where PN is the empirical probability measure and F is the class of

functions defined as F =
{
exp (iY ′t) : t ∈ [−T, T ]P

}
. Discretize [−T, T ]P into L =

(
4TP
ε

)P
points, t1, . . . , tL, by

cutting [−T, T ] in each dimension into equidistant segments of length ε
2P . Let gl(Y ) = exp

(
iY ′tl

)
for t1, . . . , tL

chosen above. For any t ∈ [−T, T ]P there exists an l such that

EN

∣∣exp (iY ′t)− exp
(
iY ′tl

)∣∣ = EN

∣∣cos (Y ′t) + i sin (Y ′t)− cos
(
Y ′tl

)
− i sin

(
Y ′tl

)∣∣ ≤ 2P
∣∣∣∣t− tl

∣∣∣∣
∞ ≤ ε

It follows that the L1-covering number satisfies N1(ε, PN ,F) ≤ C̃3

(
T
ε

)P
where C̃3 = (4P )P . By Pollard (1984)

Pr (sup |EN [ft]− E [ft]| > ε) ≤ 8N1 (ε/8, PN ,F) exp
(
−Nε2

128

/
max

l
EN

[
g2l
])
≤ C̃4

(
T

ε

)P

exp

(
−Nε2

128

)

Index ε and T by N and let

TN = C̃1

(
lnN

N

) 1
2

N
δ̃
2 C̃1 > 0, δ̃ > 1

εN = C̃2

(
lnN

N

) 1
2

For C̃2
2 > 64(2 + P δ̃) and N large enough

Pr (sup |EN [ft]− E [ft]| > εN ) = C̃4

(
TN

εN

)P

exp

(
−Nε2N

128

)

= C̃4 exp

(
P ln

(
TN

εN

)
− Nε2N

128

)

= C̃4 exp


P ln


 C̃1

(
lnN
N

) 1
2 N

δ̃
2

C̃2

(
lnN
N

) 1
2


−

N
(
C̃2

(
lnN
N

) 1
2

)2

128




= C̃4 exp

(
P ln

(
C̃1

C̃2

N
δ̃
2

)
− C̃2

2

128
lnN

)

= C̃4 exp

(
P ln

(
C̃1

C̃2

)
+

[
P δ̃

2
− C̃2

2

128

]
lnN

)

= C̃5 exp

([
P δ̃

2
− C̃2

2

128

]
lnN

)

< C̃5 exp
(
− lnN1+β̃

)

=
C̃5

N1+β̃
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where C̃2
2 is chosen so that β̃ := −P δ̃

2 +
C̃2

2

128 − 1 > 0.

For the above choices of εN , TN and C̃2

∞∑

N=1

Pr (sup |EN [ft]− E [ft]| > εN ) < C̃5

∞∑

N=1

1

N1+β̃
<∞

The Borel-Cantelli lemma then implies that

sup |EN [ft]− E [ft]| ≤ εN a.s

for N large enough.

7.4 Proof of Theorem 2

The proof requires four inequalities:

1. sup
∣∣∣φ̂Y p(t)− φY p(t)

∣∣∣ ≤ εN follows from Lemma 1.

2. sup
∣∣∣φ̂Y p(t)

∣∣∣ = sup
∣∣∣φ̂Y p(t)− φY p(t) + φY p(t)

∣∣∣ ≤ sup |
∣∣∣φ̂Y p(t)− φY p(t)

∣∣∣ + sup |φY p(t)| ≤ εN + E ||Y ||∞
where the inequality follows from the triangle inequality and Lemma 1. By assumption E ||Y ||∞ is

bounded.

3. For all t ∈ [−TN , TN ]P
∣∣∣ φ̂Y (t)−φY (t)

φY (t)

∣∣∣ ≤ εN
|φY (t)| follows from Lemma 1.

4. For all t ∈ [−TN , TN ]P

1∣∣∣1 + φ̂Y (t)−φY (t)
φY (t)

∣∣∣
≤ 1∣∣∣∣1−

|φ̂Y (t)−φY (t)|
|φY (t)|

∣∣∣∣
=

|φY (t)|∣∣∣|φY (t)| −
∣∣∣φ̂Y (t)− φY (t)

∣∣∣
∣∣∣
≤ |φY (t)|

(|φY (t)| − εN )+

where the first inequality follows from the triangle inequality and the second inequality follows from

Lemma 1.

The proof proceeds as follows

sup
s∈[−SN ,SN ]

∣∣∣∣∣

∫ s

0

(
φ̂Y p(ue

m∗

)

φ̂Y (uem∗)
−

φY p(ue
m∗

)

φY (uem∗)

)

du

∣∣∣∣∣

= sup
s∈[−SN ,SN ]

∣∣∣∣∣

∫ s

0

(
φ̂Y p(ue

m∗

)

φ̂Y (uem∗)
−

φ̂Y p(ue
m∗

)

φY (uem∗)
+

φ̂Y p(ue
m∗

)

φY (uem∗)
−

φY p(ue
m∗

)

φY (uem∗)

)

du

∣∣∣∣∣

≤ sup
s∈[−SN ,SN ]

∣∣∣∣∣

∫ s

0

(
φ̂Y p(ue

m∗

)

φ̂Y (uem∗)
−

φ̂Y p(ue
m∗

)

φY (uem∗)

)

du

∣∣∣∣∣+ sup
s∈[−SN ,SN ]

∣∣∣∣∣

∫ s

0

(
φ̂Y p(ue

m∗

)

φY (uem∗)
−

φY p(ue
m∗

)

φY (uem∗)

)

du

∣∣∣∣∣
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= sup
s∈[−SN ,SN ]

∣∣∣∣∣∣

∫ s

0

−



 φ̂Y p(ue
m∗

)

φY (uem∗)
·

φ̂Y (uem
∗
)−φY (uem

∗
)

φY (uem
∗
)

1 + φ̂Y (uem
∗
)−φY (uem

∗
)

φY (uem
∗
)



 du

∣∣∣∣∣∣
+ sup

s∈[−SN ,SN ]

∣∣∣∣

∫ s

0

(
1

φY (uem∗)

(
φ̂Y p(ue

m∗

)− φY p(ue
m∗

)
))

du

∣∣∣∣

≤ sup
s∈[−SN ,SN ]

∫ s

0

∣∣∣φ̂Y p(ue
m∗

)
∣∣∣
∣∣∣∣

1

φY (uem∗)

∣∣∣∣

∣∣∣∣∣∣

φ̂Y (uem
∗
)−φY (uem

∗
)

φY (uem
∗
)

1 + φ̂Y (uem
∗
)−φY (uem

∗
)

φY (uem
∗
)

∣∣∣∣∣∣
du+ sup

s∈[−SN ,SN ]

∫ s

0

∣∣∣∣
1

φY (uem∗)

∣∣∣∣
∣∣∣φ̂Y p(ue

m∗

)− φY p(ue
m∗

)
∣∣∣ du

≤ sup
∣∣∣φ̂Y p(ue

m∗

)
∣∣∣ sup
s∈[−SN ,SN ]

∫ s

0

∣∣∣∣
1

φY (uem∗)

∣∣∣∣
sup

∣∣∣φ̂Y (uem
∗
)−φY (uem

∗
)
∣∣∣

|φY (uem
∗
)|∣∣∣1 + φ̂Y (uem

∗
)−φY (uem

∗
)

φY (uem
∗
)

∣∣∣
du+ sup

∣∣∣φ̂Y p(ue
m∗

)− φY p(ue
m∗

)
∣∣∣ sup
s∈[−SN ,SN ]

∫ s

0

∣∣∣∣
1

φY (uem∗)

∣∣∣∣

≤
(
εN + E ||Y ||

∞

) ∫ SN

−SN

1

|φY (uem∗)|
·

εN

|φY (uem∗)|
·

∣∣∣φY (uem
∗

)
∣∣∣

(|φY (uem∗)| − εN )+
du+ εN

∫ SN

−SN

1

|φY (uem∗)|
du

= εN
(
εN + E ||Y ||

∞

) ∫ SN

−SN

1

|φY (uem∗)| (|φY (uem∗)| − εN )+
du+ εN

∫ SN

−SN

1

|φY (uem∗)|
du

= εN
(
εN + E ||Y ||

∞

) ∫ SN

−SN

1

|φY (uem∗)| (|φY (uem∗)| − εN )+
du+ εN

∫ SN

−SN

1

|φY (uem∗)|
du

≤ C7εN

∫ SN

−SN

1

|φY (uem∗)| (|φY (uem∗)| − εN )+
du

where the fourth inequality follows from the four inequalities stated before the proof.

For large N , sups∈[−SN ,SN ]

∣∣∣
∫ s

0
φ̂Y p(ue

m∗
)

φ̂Y (uem∗ )
du−

∫ s

0
φY p(ue

m∗
)

φY (uem∗ )
du
∣∣∣ ≤ 1 so that

sup
s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣ = sup

s∈[−SN ,SN ]

∣∣∣∣∣exp
(∫ s

0

φ̂Y p(ue
m∗

)

φ̂Y (uem
∗)

du

)
− exp

(∫ s

0

φY p(ue
m∗

)

φY (uem
∗)

)
du

∣∣∣∣∣

≤ sup
s∈[−SN ,SN ]

∣∣∣∣∣

∫ s

0

φ̂Y p(ue
m∗

)

φ̂Y (uem
∗)

du−
∫ s

0

φY p(ue
m∗

)

φY (uem
∗)

du

∣∣∣∣∣

≤ C7εN

∫ SN

−SN

1

|φY (uem
∗)| (|φY (uem

∗)| − εN )
+ du

7.5 Proof of Theorem 3

For all u in the support of Um∗ and for N large enough

∣∣∣f̂m∗(u)− fm∗(u)
∣∣∣

=

∣∣∣∣
1

2π

∫
e
−isu

φ̂m∗(s)φK (shN ) ds−
1

2π

∫
e
−isu

φm∗(s)ds

∣∣∣∣

=

∣∣∣∣
1

2π

∫
e
−isu

(
φ̂m∗(s)φK(shN )− φm∗(s)φK(shN ) + φm∗(s)φK(shN )− φm∗(s)

)
ds

∣∣∣∣

=

∣∣∣∣
1

2π

∫
e
−isu

φK(shN )
(
φ̂m∗(s)− φm∗(s)

)
ds+

1

2π

∫
e
−isu

φm∗(s) (φK(shN )− 1) ds

∣∣∣∣

≤
1

2π

∫
|φK(shN )|

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣+

1

2π

∫
|φm∗(s)| |φK(shN )− 1| ds

≤
1

2π

∫ SN

−SN

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣ ds+

1

2π

∫ SN

−SN

|φm∗(s)| |m(shN ) (shN )q| ds+
1

π

∫
∞

SN

|φm∗(s)| ds

≤
SN

π
sup

s∈[−SN ,SN ]

∣∣∣φ̂m∗(s)− φm∗(s)
∣∣∣+

1

2π
sup

t∈[−1,1]

|m(s)|hq
N

∫ SN

−SN

|φm∗(s)||s|qds+
1

2π

∫
−SN

−∞

|φm∗(s)|ds+
1

2π

∫
∞

SN

|φm∗(s)|ds
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≤
SNC7εN

π

∫ SN

−SN

1

|φY (ve∗)| (|φY (ve∗)| − εN )+
dv +

1

2π
sup

s∈[−1,1]

|m(s)|hq
N

∫ SN

−SN

|s|q|φm∗(s)|ds+
1

2π

∫
−SN

−∞

|φm∗(s)|ds+
1

2π

∫
∞

SN

|φm∗(s

where the second inequality follows because |φK(s)| < 1, φK(s) = 1 + m(s)sq for s ∈ [−1, 1] and φK(s) = 0

otherwise and m(s) is continuous for s ∈ [−1, 1], the third inequality follows because m is continuous on a

compact interval and the fourth inequality follows from Theorem 1.

45



REFERENCES

BONDESSON, L. (1974). “Characterizations of Probability Laws Through Constant Regression,” Z. Wahrsch.

v. Geb, 29, 93-115.

BONHOMME, S., and ROBIN, J.-M. (2010), “Generalized Non-Parametric Deconvolution with an Application

to Earnings Dynamics,” Review of Economic Studies, 77 (2), 491-533.

CARRASCO, M., FLORENS J.-P. (2010), “Spectral Method for Deconvolving a Density”, Econometric Theory,

forthcoming

CARROLL, R.J., RUPPERT, D., STEFANSKI, L.A., CRAINICEANU, C. (2006) , Measurement Error in

Nonlinear Models: A Modern Perspective, Second Edition (Chapman and Hall).

CHEN, X., HONG, NEKIPELOV, D. (2011), “Nonlinear Models of Measurement Errors,” Journal of Economic

Literature, forthcoming

CHERNOZHUKOV, V., FERNANDEZ-VAL, I., HAHN, J. and NEWEY, W. (2010), “Average and Quantile

Effects in Nonseparable Panel Models”

CHESHER, A. (2007), “Instrumental Values,” Journal of Econometrics, 139, 15-34.

CSÖRGO, S. (1981), “Limit Behaviour of the Empirical Characteristic Function,” Annals of Probability, 9 (1),

130-144.

CUNHA, F., HECKMAN, J., SCHENNACH, S. M., (2010), “Estimating the Technology of Cognitive and

Noncognitive Skill Formation,” Econometrica. 78, 883-931.

DELAIGLE, A. and GIJBELS, I. (2002), “Estimation of Integrated Squared Density Derivatives from a Con-

taminated Sample,” Journal of the Royal Statistical Society, Series B, 64, 869886.

DELAIGLE, A., HALL, P. and MEISTER, A. (2008), “On Deconvolution with Repeated Measurements,”

Annals of Statistics, 36 (2), 665685.

EVDOKIMOV, K. (2011), “Identification and Estimation of a Nonparametric Panel Data Model with Unob-

served Heterogeneity”

EVDOKIMOV, K. White, H. (2011). “An Extension of a Lemma of Kotlarski,”

FAN, J. Q. (1991), “On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems,” Annals

of Statistics, 19, 1257-1272.

GAUTIER, E. and KITAMURA, Y. (2009) “Nonparametric Estimation in Random Coefficients Binary Choice

Models,”

HOROWITZ, J. L. and MARKATOU, M. (1996), “Semiparametric Estimation of Regression Models for Panel

Data,” Review of Economic Studies, 63, 145168.

HSIAO, C. (1986). Analysis of Panel Data (Cambridge: Cambridge University Press).

46



HU, Y. and RIDDER, G. (2011), “Estimation of Nonlinear Models with Mismeasured Regressors Using Marginal

Information,” Journal of Applied Econometrics, forthcoming

HU, Y. and RIDDER, G. (2010), “On Deconvolution as a First Stage Nonparametric Estimator,” Econometric

Reviews, 29, 1-32.

HU, Y. and SCHENNACH, S. M. (2007), “Instrumental variable treatment of nonclassical measurement error

models,” Econometrica, 75, 201-239.

KHATRI, C. G. and RAO, C. R. (1968), “Solutions to Some Functional Equations and their Applications to

Characterization of Probability Distributions,” Sankhyä, 30, 167180.
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Figure 1: Measurement error model with repeated measurements. Experiment 1: X∗ ∼ Normal(0, 1) with
N = 1, 000. The left column is the real part of the characteristic function, the middle column is the imaginary
part of the characteristic function and the right column is the density. The first through fifth rows are estimators
1 though 5, respectively.
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Figure 2: Measurement error model with repeated measurements. Experiment 2: X∗ ∼ Gamma(2, 1) with
N = 1, 000. The left column is the real part of the characteristic function, the middle column is the imaginary
part of the characteristic function and the right column is the density. The first through fifth rows are estimators
1 though 5, respectively.
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Figure 3: Measurement error model with repeated measurements. Experiment 3: X∗ ∼ Gamma(5, 1) with
N = 1, 000. The left column is the real part of the characteristic function, the middle column is the imaginary
part of the characteristic function and the right column is the density. The first through fifth rows are estimators
1 though 5, respectively.
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Figure 4: Measurement error model with repeated measurements. Experiment 4: X∗ ∼ Lognormal with
N = 1, 000. The left column is the real part of the characteristic function, the middle column is the imaginary
part of the characteristic function and the right column is the density. The first through fifth rows are estimators
1 though 5, respectively.
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Figure 5: Measurement error model with repeated measurements. Experiment 5: X∗ ∼ 400
403N(0, 1

2 ) +
3

403N(0, 406
6 ) (Unimodal with N = 1, 000. The left column is the real part of the characteristic function,

the middle column is the imaginary part of the characteristic function and the right column is the density. The
first through fifth rows are estimators 1 though 5, respectively.
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Figure 6: Measurement error model with repeated measurements. Experiment 6: X∗ ∼ 1
2N(−2, 1) + 1

2N(2, 1)
(Bimodal) with N = 1, 000. The left column is the real part of the characteristic function, the middle column
is the imaginary part of the characteristic function and the right column is the density. The first through fifth
rows are estimators 1 though 5, respectively.
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Figure 7: Measurement error model with repeated measurements. Experiment 7: X∗ ∼ Normal(0, 1) (X∗ and ε1
dependent) with N = 1, 000. The left column is the real part of the characteristic function, the middle column
is the imaginary part of the characteristic function and the right column is the density. The first through fifth
rows are estimators 1 though 5, respectively.
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Figure 8: Measurement error model with repeated measurements. Experiment 8: X∗ ∼ Unif(0, 2) with N =
1, 000. The left column is the real part of the characteristic function, the middle column is the imaginary part
of the characteristic function and the right column is the density. The first through fifth rows are estimators 1
though 5, respectively.
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Table 1: Comparing Estimators (N=100)
Experiment Estimator A Estimator B Estimator C Estimator D Estimator E

Norm(0,1) MISE 3.4838 0.0653 0.0707 0.0254 0.6088
Gamma(2,1) MISE 82.853 2.6444 0.8068 4424.4 0.2001
Gamma(5,1) MISE 49.543 0.5971 0.3186 NaN 0.2088
Lognormal MISE 43.808 1.9967 0.0962 944.75 0.0612
Unimodal MISE 1148.0 700.19 5.1063 >1,000 4.2132
Bimodal MISE 0.0351 0.2117 0.0238 NaN 0.0786
Norm(0,1) (Depend) MISE 0.0284 0.2545 0.0294 0.0178 0.1585
U(0,1) MISE >1,000 0.0329 0.0323 NaN 430.29

Table 2: Comparing Estimators (N=1,000)
Experiment Estimator A Estimator B Estimator C Estimator D Estimator E

N(0,1) MISE 0.0059 0.0128 0.0067 0.0022 0.0319
Gamma(2,1) MISE 53.144 1.1908 0.0234 0.0081 0.1227
Gamma(5,1) MISE 0.1781 0.0957 139.63 >1,000 0.1417
Lognormal MISE 0.0467 18.107 0.0487 0.0422 0.0396
Unimodal MISE 3.2454 743.32 0.4366 0.0320 1.1128
Bimodal MISE 1.8272 0.0068 0.0026 NaN 0.0037
Norm(0,1) (Depend) MISE 0.0036 0.0771 0.0158 0.0056 0.0799
U(0,1) MISE 0.2322 0.0174 0.0174 NaN 256.60

Table 3: Comparing Estimators (N=10,000)
Experiment Estimator A Estimator B Estimator C Estimator D Estimator E

N(0,1) MISE 0.0007 0.0021 0.0006 0.0003 0.0023
Gamma(2,1) MISE 1.0548 0.0090 0.0106 0.0023 0.1131
Gamma(5,1) MISE 0.0010 0.0132 0.0007 0.0003 0.1359
Lognormal MISE 0.0975 0.0792 8.4942 0.0408 0.0394
Unimodal MISE 0.0409 0.6248 0.0267 >1,000 0.2490
Bimodal MISE 54.579 0.0006 0.0004 NaN 0.0004
Norm(0,1) (Depend) MISE 0.0005 0.0671 0.0149 0.0044 0.0692
U(0,1) MISE >1,000 0.0158 0.0158 NaN 238.12
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